National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Scientist

London
4 days ago
Create job alert

Job Title: Data Scientist

Location: Hybrid onsite in London

Shift: Monday- Friday 40 Hours

Duration: 12 Months (Inside IR35 Umbrella Contract)

Pay: £(Apply online only) per day (depending on experience)

Job Description:

The Data Scientist will be responsible for running analytical experiments in a methodical manner and will regularly evaluate alternate models via theoretical approaches. The role will participate in the team’s engagement with business stakeholders and partners to enhance the existing analytics solutions and developing new solutions to business problems.

The role requires a candidate with vision that will be instrumental in providing inputs to the AI & Data Science, Central Data, and business teams for the design and building of predictive models and algorithms, exploratory data analysis, test design, statistical tests and measures, and business value measurement.

Key accountabilities

  • Lead the design, development, and implementation of AI/ML solutions for applications specific to trading, and oil and gas development and operations

  • Design end-to-end ML pipelines that address the full lifecycle of AI/ML solutions from ideation to production deployment, ensuring scalability and business impact.

  • Collaborate with multi-functional teams including geologists, petroleum engineers, and operations staff to translate complex business problems into effective data-driven solutions

  • Drive MLOps best practices, including CI/CD pipelines, model monitoring, and automated retraining workflows.

  • Spearhead research initiatives to solve complex business problems using statistics, ML, and foundation models, while serving as the SME in advanced ML techniques, educating partners on model capabilities and limitations.

  • Identify high-impact AI opportunities, prioritizing initiatives that drive revenue growth and operational efficiency.

  • Partner with Data Engineering to design scalable data pipelines for ML consumption to ensure real-time data integrations and develop model-serving architectures.

  • Apply predictive modeling, LLMs, and deep learning to extract actionable insights from large-scale datasets.

  • Leverage data science tools and techniques in analyzing large datasets that will enable development of custom models and algorithms to uncover insights, trends, and patterns in the data, which will be useful in availing informed courses of action.

  • Responsible for the evaluation of analytics and machine learning technologies for use in the business and communicates findings to key partners through reports and presentations.

  • Partners with other non-technical departments within the business to assist them in understanding how data science can benefit them and improve their effectiveness and performance.

  • Stay ahead of cutting-edge AI advancements (e.g., Generative AI, reinforcement learning) and assess their business viability.

    Essential Education & Experience

  • A degree in Statistics, Machine Learning, Mathematics, Computer Science, Economics, or any other related quantitative field.

  • 5+ years of experience in machine learning (supervised, unsupervised, and ensemble methods), natural language processing; deep learning experience is a bonus.

  • 3+ years of experience developing and deploying machine learning models in production environments with demonstrable impact to the business

  • Demonstrated expertise in Python and relevant data science/ML libraries including TensorFlow, PyTorch, scikit-learn, and pandas, and ability to create visualizations and apply persuasive story telling.

  • Hands-on experience with cloud computing platforms (AWS, Azure, GCP) and proficiency with industrial data platforms

  • Proven track record of developing, scaling, and implementing models in customer facing environments.

  • Solid understanding of statistical analysis, experimental design, and data preprocessing techniques for industrial applications

  • Knowledge of DevOps practices and CI/CD pipelines for seamless ML model deployment in production environments

  • Proven ability to design fault-tolerant ML systems with monitoring and automated retraining pipelines, along with model-serving and event-driven architectures

  • Demonstrated ability to conduct rapid Proof of Concepts (POCs) using design thinking methodologies

  • Exposure of modern ML libraries (Hugging Face Transformers, LangChain, LlamaIndex), Spark/PySpark for large-scale data processing

    Desireable criteria

  • Ability to lead others to draw conclusions from data and recommend actions.

  • Ability to succeed in a fast-paced environment, deliver high quality performance on multiple, simultaneous strategic, value-added tasks and priorities.

  • Relentless drive, determination, and self-learning ability.

  • Highly organized and attentive to detail

Related Jobs

View all jobs

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

Data Scientist

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 AI Recruitment Agencies in the UK You Should Know (2025 Job‑Seeker Guide)

Generative‑AI hype has translated into real hiring: Lightcast recorded +57 % year‑on‑year growth in UK adverts mentioning “machine learning”, “LLM” or “gen‑AI” during Q1 2025. Yet supply still lags. Roughly 18,000 core AI professionals work in the UK, but monthly live vacancies hover around 1,400–1,600. That mismatch makes specialist recruiters invaluable—opening stealth vacancies, advising on salary bands and fast‑tracking interview loops. But many tech agencies sprinkle “AI” on their website without an active desk. To save you time, we vetted 50 + consultancies and kept only those with: A registered UK head office (verified via Companies House). A named AI/Machine‑Learning or Data practice.

AI Jobs Skills Radar 2026: Emerging Frameworks, Languages & Tools to Learn Now

As the UK’s AI sector accelerates towards a £1 trillion tech economy, the job landscape is rapidly evolving. Whether you’re an aspiring AI engineer, a machine learning specialist, or a data-driven software developer, staying ahead of the curve means more than just brushing up on Python. You’ll need to master a new generation of frameworks, languages, and tools shaping the future of artificial intelligence. Welcome to the AI Jobs Skills Radar 2026—your definitive guide to the emerging AI tech stack that employers will be looking for in the next 12–24 months. Updated annually for accuracy and relevance, this guide breaks down the top tools, frameworks, platforms, and programming languages powering the UK’s most in-demand AI careers.

How to Find Hidden AI Jobs in the UK Using Professional Bodies like BCS, IET & the Turing Society

Stop Scrolling Job Boards and Start Tapping the Real AI Market Every week a new headline announces millions of pounds flowing into artificial-intelligence research, defence initiatives, or health-tech pilots. Read the news and you could be forgiven for thinking that AI vacancies must be everywhere—just grab your laptop, open LinkedIn, and pick a role. Yet anyone who has hunted seriously for an AI job in the United Kingdom knows the truth is messier. A large percentage of worthwhile AI positions—especially specialist or senior posts—never appear on public boards. They emerge inside university–industry consortia, defence labs, NHS data-science teams, climate-tech start-ups, and venture studios. Most are filled through referral or conversation long before a recruiter drafts a formal advert. If you wait for a vacancy link, you are already at the back of the queue. The surest way to beat that dynamic is to embed yourself in the professional bodies and grassroots communities where the work is conceived. The UK has a dense network of such organisations: the Chartered Institute for IT (BCS); the Institution of Engineering and Technology (IET) with its Artificial Intelligence Technical Network; the Alan Turing Institute and its student-driven Turing Society; the Royal Statistical Society (RSS); the Institution of Mechanical Engineers (IMechE) and its Mechatronics, Informatics & Control Group; public-funding engines like UK Research and Innovation (UKRI); and an ecosystem of Slack channels and Meetup groups that trade genuine, timely intel. This article is a practical, step-by-step guide to using those networks. You will learn: Why professional bodies matter more than algorithmic job boards Exactly which special-interest groups (SIGs) and technical networks to join How to turn CPD events into informal interviews How to monitor grant databases so you hear about posts months before they exist Concrete scripts, portfolio tactics, and outreach rhythms that convert visibility into offers Follow the playbook and you move from passive applicant to insider—the colleague who hears about a role before it is written down.