Data Science Manager

Harnham
Edinburgh
6 months ago
Applications closed

Related Jobs

View all jobs

Data Science Manager

Data Science Manager

Data Science Manager

Data Science Manager (Metaheuristics)

Data Science Manager - Market Research Consultancy

Data Science Manager at Severn Trent – Coventry, England, GB

Data Science Manager

Remote (UK-Based)

Up to £75,000


The Company

This UK-based start-up has achieved rapid growth in just two years, now boasting a team of ~40 people across divisions. Following a successful funding round and with a strong pipeline ahead, they continue to scale at pace.

They specialise inpredictive analyticsandKPI trackingacross a broad range of companies and industries. Their predictive insights empower hedge funds and investors with critical performance data, ahead of public earnings reports.


The Role

As aData Science Manager, you’ll take ownership of the end-to-end development of KPI prediction models and manage a team of data scientists, helping refine their workflows and ensure high-quality deliverables.

You will:

  • Lead and mentor a team of data scientists in building predictive models.
  • Oversee data cleaning, feature engineering, and model development pipelines.
  • Build and maintain robust, scalable linear regression and statistical models for KPI forecasting.
  • Drive improvements in internal tooling and API integrations.
  • Collaborate closely with leadership, engineering, and the revenue team to translate business needs into data science solutions.
  • Play a key role in product innovation, helping shape how new data products are designed and delivered.


What They're Looking For

  • 5+ years’ experiencein data science or a closely related field.
  • Proven leadership experience — mentoring or managing junior data scientists.
  • Expert Python programming skills (essential).
  • Strong grasp of linear regression, statistical modeling, and data processing best practices.
  • Proficient in SQL (MySQL preferred).
  • Experience with web scraping, machine learning techniques, and dashboarding tools is a bonus.
  • Familiarity with Docker, time series forecasting, or LLM technologies is advantageous.
  • A background or exposure to finance is useful but not mandatory.
  • Bachelor’s degree (or higher) in a quantitative or technical field.
  • Strong coding samples (e.g., GitHub projects).
  • Practical experience building production-level models and data pipelines.
  • Ability to bridge data science and product development goals.


If this role looks it could be of interest, please reach out to Joseph Gregory, or apply here.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.