Data Science Manager

London
2 weeks ago
Create job alert

Data Science Manager

London

About the Team

At Deliveroo we have an outstanding data science organisation, with a mission to enable the highest quality human and machine decision-making. We work throughout the company - in product, business and platform teams - using analysis, experimentation, causal inference and machine learning techniques. We are uniquely placed to use data to help make better decisions and improve data literacy across Deliveroo.

Our team members use technical skills from the whole spectrum of data science: building analytical tools; informing decision making at all levels of the business via bespoke and automated analysis; running experiments; performing causal analysis; informing planning and prioritisation with robust impact estimates; building production machine learning and optimisation models; and upskilling the entire company in data literacy and data driven decision making.

Data scientists at Deliveroo report into our data science management team, and we have a strong, active data science community with guest lecturers, a robust technical review process, a career progression framework, and plenty of opportunities to learn new things. We have career pathways for both managers and individual contributors.

Our data scientists come from all kinds of backgrounds but have excellence in common. Many are formally trained in data science, many are not.

About the Role

We are looking for a data science manager to join our management team. We are looking for someone who:

  • Has experience line-managing data scientists and guiding their career development.

  • Has prior hands-on experience as a senior-level individual contributor, familiar with experimentation, causal analysis and data visualisation methods

  • Consistently identifies opportunities where data science and analytics can add significant value, and delivers on them by building roadmaps and translating insights into clear strategy and execution

  • Is comfortable working with stakeholders up to C-level, guiding company-level strategy and clearly explaining highly technical solutions to all audiences

  • Is able to bring together a group of individuals from many different backgrounds and skill sets to form a cohesive high-performing team

  • Is comfortable managing multiple teams in different business areas, and ruthlessly prioritising

  • Is comfortable working in an extremely fast, constantly changing environment, with incredibly high standards

  • Has a pragmatic, flexible approach, and most cares about achieving impact

    Workplace & Benefits

    At Deliveroo we know that people are the heart of the business and we prioritise their welfare. Benefits differ by country, but we offer many benefits in areas including healthcare, well-being, parental leave, pensions, and generous annual leave allowances, including time off to support a charitable cause of your choice. Benefits are country-specific, please ask your recruiter for more information.

    Diversity

    At Deliveroo, we believe a great workplace is one that represents the world we live in and how beautifully diverse it can be. That means we have no judgement when it comes to any one of the things that make you who you are - your gender, race, sexuality, religion or a secret aversion to coriander. All you need is a passion for (most) food and a desire to be part of one of the fastest-growing businesses in a rapidly growing industry.

    We are committed to diversity, equity and inclusion in all aspects of our hiring process. We recognise that some candidates may require adjustments to apply for a position or fairly participate in the interview process. If you require any adjustments, please don't hesitate to let us know. We will make every effort to provide the necessary adjustments to ensure you have an equitable opportunity to succeed

Related Jobs

View all jobs

Data Science Manager

Data Science Manager – Gen/AI & ML Projects - Bristol

Data Science Manager

Data Science Manager

Data Science Manager

Data Science Manager

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.