Data Science Analyst (Graduate)

Borehamwood
3 weeks ago
Create job alert

Data Science Analysts (Graduates)
£30,000 - £35,000 Negotiable DoE
Hybrid working - North London Head Office (Borehamwood) & Home
Job Reference J12939

Proud to employ great people who are passionate about what we do

Safestore is the UK's largest self-storage group, and part of the FTSE 250. We believe that engaged colleagues, who feel valued by our business, are the foundation of our customer-focused culture. We know our people as individuals, and show respect for each other, enabling everyone to have a voice so that they can bring their full, unique selves to work. We are exceptionally proud that, in 2021, we were awarded the prestigious 'Investors in People' Platinum accreditation, placing us in the top 2% of accredited organisations in the UK and have maintained this accreditation ever since.

Unrivalled opportunity for career development and to positively influence the business

We are currently recruiting for two Data Science Analysts (Graduates); working closely together and playing crucial roles to the business. One Analyst will support the Commercial and Operations teams to deliver the UK and EU commercial strategies and enable the business to achieve its objectives. The second Analyst providing support to the pricing team to deliver the UK and EU pricing strategies and enable the business to achieve its objectives through dynamic pricing.
Key Accountabilities
• Partner with other support departments to discover and deliver projects that use data and statistics in identifying trends and optimisation to support decision making
• Perform statistical analysis on our customer base and formulate either pricing strategies or commercial strategies to optimise revenue.
• Deliver insights to drive business decisions and design algorithms that can be used to improve either our pricing or operational strategy.
• Develop an excellent understanding of relevant internal and external data sources.
• Work together with other departments and stakeholders to develop and promote best practices in analytics and experimentation across the company.
• Design and build internal self-service analytics and experimentation tooling.

Experience & skills required
• A Master's degree in a quantitative or statistical subject.
• An ability to articulate and interpret commercial-based questions, identifying and querying data (SQL) and using statistics to arrive at an answer.
• A sound understanding of statistics (probability distributions, sampling, hypothesis testing, regression) and some practical experience in applying some of these concepts in real-life problems.
• Experience using statistical software and programming using R, SQL, Python or similar in datasets.
• Excellent communication skills to be able to understand business needs of cross-functional stakeholders, deliver findings and recommendations, as well as to drive collaboration.

Preferred Requirements
• Experience in identifying opportunities for product or business improvements and measuring the success of those initiatives.
• Experience in applying modelling techniques e.g. time series forecasting, segmentation / clustering, anomaly detection.
If this great opportunity interests you, please make an application to our Recruitment Partner, Datatech Analytics

Related Jobs

View all jobs

Head of Pricing Technology

Data Analyst (Audit)

Data Analyst (Product Supply)

Trainee Data Analyst

Trainee Data Analyst

Trainee Data Analyst

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Non‑Technical Professionals: Where Do You Fit In?

Your Seat at the AI Table Artificial Intelligence (AI) has left the lab and entered boardrooms, high‑street banks, hospitals and marketing agencies across the United Kingdom. Yet a stubborn myth lingers: “AI careers are only for coders and PhDs.” If you can’t write TensorFlow, surely you have no place in the conversation—right? Wrong. According to PwC’s UK AI Jobs Barometer 2024, vacancies mentioning AI rose 61 % year‑on‑year, but only 35 % of those adverts required advanced programming skills (pwc.co.uk). The Department for Culture, Media & Sport (DCMS) likewise reports that Britain’s fastest‑growing AI employers are “actively recruiting non‑technical talent to scale responsibly” (gov.uk). Put simply, the nation needs communicators, strategists, ethicists, marketers and project leaders every bit as urgently as it needs machine‑learning engineers. This 2,500‑word guide shows where you fit in—and how to land an AI role without touching a line of Python.

ElevenLabs AI Jobs in 2025: Your Complete UK Guide to Crafting Human‑Level Voice Technology

"Make any voice sound infinitely human." That tagline catapulted ElevenLabs from hack‑day prototype to unicorn‑status voice‑AI platform in under three years. The London‑ and New York‑based start‑up’s text‑to‑speech, dubbing and voice‑cloning APIs now serve publishers, film studios, ed‑tech giants and accessibility apps across 45 languages. After an $80 m Series B round in January 2024—which pushed valuation above $1 bn—ElevenLabs is scaling fast, doubling revenue every quarter and hiring aggressively. If you’re an ML engineer who dreams in spectrograms, an audio‑DSP wizard or a product storyteller who can translate jargon into creative workflows, this guide explains how to land an ElevenLabs AI job in 2025.

AI vs. Data Science vs. Machine Learning Jobs: Which Path Should You Choose?

In recent years, the fields of Artificial Intelligence (AI), Data Science, and Machine Learning (ML) have experienced explosive growth. Spurred by the increase in data availability, advances in computing power, and the demand for intelligent decision-making, organisations of all sizes are investing heavily in these areas. If you’ve been exploring AI jobs on www.artificialintelligencejobs.co.uk, you’ve likely noticed that employers use terms like “AI,” “Data Science,” and “Machine Learning”—often interchangeably. While they are closely related, there are nuanced differences between these fields. Understanding these distinctions is key if you’re trying to decide which path suits you best. This comprehensive guide will help you differentiate among AI, Data Science, and Machine Learning. We will discuss the key skills for each, typical job roles, salary ranges, and provide real-world examples of professionals working in these fields. By the end, you should have a clearer idea of where your strengths and passions might fit, helping you take the next step towards securing your ideal role in the world of data-driven innovation.