Data Ops Engineer

Sofia
3 weeks ago
Create job alert

Data Ops Engineer | Data Tooling, Security | FinTech Software Company

Hybrid in Sofia
£85-90,000 
Our client is looking for a UX/UI Developer to join a top-tier, well-established FinTech firm specialising in SaaS products that deliver real-time market data and pricing, comparable with industry giants like Bloomberg and Reuters. It has more than 600 employees spread across global locations in the UK, US, China, India, Singapore, Brazil, Belgium, Finland and beyond.
 
We are looking for an experienced Data Ops Engineer to lead the implementation of best practices in DataOps and optimise our client’s Snowflake platform. You will play a key role in managing data resilience, performance, and security while ensuring efficient user and role management.
 
You will also support data orchestration using Dagster (or similar tools like Airflow) and enhance integration with Qlik for operational analytics. This role is crucial in modernising their data infrastructure and ensuring high availability, reliability, and integrity of data platforms.
 
This is a fantastic opportunity to drive real change, collaborate with teams across Data, Engineering, and Cyber, and help shape their next-generation data architecture.
 
Key skills:

DataOps best practices
Snowflake, including performance tuning, governance, and user/role management
Dagster, Airflow, or Python-based orchestration tools
Qlik for data visualisation and analytics
Experience with data backup, restore, and integrity management
Proficiency in databases such as Cosmos DB, MySQL, and SQL Server
RBAC and user management using Azure Active Directory (AD)
Monitoring and observability tools (e.g., Grafana)
Scripting and automation with Bash, PowerShell, and Linux administration
Strong problem-solving and collaboration skills 
Nice to have skills:

Cloud deployment experience (Azure preferred, but AWS or GCP acceptable)
Experience with data pipelines and streaming data technologies
Kubernetes, Docker, and containerised data platforms
Familiarity with SQL Managed Instances for data system administration
Understanding of Azure cybersecurity best practices
Experience with Terraform, GitHub, and infrastructure as code
CI/CD experience with Azure DevOps or similar tools 
Projects & Responsibilities:

Optimise and manage Snowflake for performance, resilience, and security
Develop and implement DataOps best practices to enhance efficiency
Support data orchestration with Dagster (or similar tools)
Ensure data integrity and recoverability, implementing strong backup and restore processes
Monitor and troubleshoot data platforms, using tools like Grafana
Collaborate across teams (Data, Engineering, Cyber) to drive operational improvements 
Benefits:

Highly flexible hybrid working
Option to work remotely from anywhere in the world during August
25 days holiday, 3 extra days at Christmas, 2 volunteering days
Pension contribution
Medical insurance
Life insurance
Virtual GP service
Health cash plan 
If you are excited by the prospect of this role, please get in touch quickly as our client is looking to move quickly!
Data Ops Engineer | Data Tooling, Security | FinTech Software Company

Related Jobs

View all jobs

Data Ops Engineer

Senior Machine Learning Ops Engineer

Data Science Engineer

Machine Learning Engineer( Real time Data Science Applications)

Data Scientist

Lead MLOps Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.

AI Jobs in the Public Sector: MOD, NHS & Gov Digital Service Opportunities

Artificial intelligence (AI) has rapidly evolved from a niche field of computer science into a transformative force reshaping industries across the globe. From healthcare to finance and from education to defence, AI-driven tools and techniques are revolutionising how we approach problems, improve efficiency, and make data-driven decisions. Nowhere is this transformation more apparent than in the United Kingdom’s public sector. Key government entities, including the Ministry of Defence (MOD), the National Health Service (NHS), and the Government Digital Service (GDS), are increasingly incorporating AI into their operations. Consequently, AI jobs within these bodies are growing both in number and strategic importance. In this comprehensive blog post, we will explore the landscape of AI jobs across the UK public sector, with a close look at the MOD, the NHS, and the Government Digital Service. We will delve into the reasons these organisations are investing heavily in AI, the types of roles available, the essential skills and qualifications required, as well as the salary ranges one might expect. Whether you are a new graduate keen to make a meaningful impact through your technical skills or a seasoned professional looking for your next career move, the public sector offers a wealth of opportunities in AI. By the end of this article, you will have a clearer understanding of why AI is so crucial to the public sector’s success, which roles are in demand, and how you can tailor your application to stand out in a competitive and rewarding job market.

Contract vs Permanent AI Jobs: Which Pays Better in 2025?

n the ever-evolving world of technology, the competition for top talent in artificial intelligence (AI) is intense—and the rewards are significant. By 2025, AI roles in machine learning, natural language processing, data science, and robotics are expected to be among the highest-paid professions within the UK technology sector. As an AI professional, deciding between contracting (either as a day‑rate contractor or via fixed-term contracts) and permanent employment could drastically impact your take‑home pay, job security, and career trajectory. In this article, we will delve into the various types of AI roles in 2025—particularly focusing on day‑rate contracting, fixed-term contract (FTC) roles, and permanent positions. We will compare the earning potential across these three employment types, discuss the key pros and cons, and provide practical examples of how your annual take‑home pay might differ under each scenario. Whether you are already working in AI or looking to break into this booming field, understanding these employment options will help you make an informed decision on your next move.