Data Ops Engineer

Sofia
2 weeks ago
Create job alert

Data Ops Engineer | Data Tooling, Security | FinTech Software Company

Hybrid in Sofia
£85-90,000 
Our client is looking for a UX/UI Developer to join a top-tier, well-established FinTech firm specialising in SaaS products that deliver real-time market data and pricing, comparable with industry giants like Bloomberg and Reuters. It has more than 600 employees spread across global locations in the UK, US, China, India, Singapore, Brazil, Belgium, Finland and beyond.
 
We are looking for an experienced Data Ops Engineer to lead the implementation of best practices in DataOps and optimise our client’s Snowflake platform. You will play a key role in managing data resilience, performance, and security while ensuring efficient user and role management.
 
You will also support data orchestration using Dagster (or similar tools like Airflow) and enhance integration with Qlik for operational analytics. This role is crucial in modernising their data infrastructure and ensuring high availability, reliability, and integrity of data platforms.
 
This is a fantastic opportunity to drive real change, collaborate with teams across Data, Engineering, and Cyber, and help shape their next-generation data architecture.
 
Key skills:

DataOps best practices
Snowflake, including performance tuning, governance, and user/role management
Dagster, Airflow, or Python-based orchestration tools
Qlik for data visualisation and analytics
Experience with data backup, restore, and integrity management
Proficiency in databases such as Cosmos DB, MySQL, and SQL Server
RBAC and user management using Azure Active Directory (AD)
Monitoring and observability tools (e.g., Grafana)
Scripting and automation with Bash, PowerShell, and Linux administration
Strong problem-solving and collaboration skills 
Nice to have skills:

Cloud deployment experience (Azure preferred, but AWS or GCP acceptable)
Experience with data pipelines and streaming data technologies
Kubernetes, Docker, and containerised data platforms
Familiarity with SQL Managed Instances for data system administration
Understanding of Azure cybersecurity best practices
Experience with Terraform, GitHub, and infrastructure as code
CI/CD experience with Azure DevOps or similar tools 
Projects & Responsibilities:

Optimise and manage Snowflake for performance, resilience, and security
Develop and implement DataOps best practices to enhance efficiency
Support data orchestration with Dagster (or similar tools)
Ensure data integrity and recoverability, implementing strong backup and restore processes
Monitor and troubleshoot data platforms, using tools like Grafana
Collaborate across teams (Data, Engineering, Cyber) to drive operational improvements 
Benefits:

Highly flexible hybrid working
Option to work remotely from anywhere in the world during August
25 days holiday, 3 extra days at Christmas, 2 volunteering days
Pension contribution
Medical insurance
Life insurance
Virtual GP service
Health cash plan 
If you are excited by the prospect of this role, please get in touch quickly as our client is looking to move quickly!
Data Ops Engineer | Data Tooling, Security | FinTech Software Company

Related Jobs

View all jobs

Data Ops Engineer

MLOps Engineer

Senior Data Scientist

Operations Manager

Analytics Product & Enablement Manager FTC

AWS Data Engineer

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

ElevenLabs AI Jobs in 2025: Your Complete UK Guide to Crafting Human‑Level Voice Technology

"Make any voice sound infinitely human." That tagline catapulted ElevenLabs from hack‑day prototype to unicorn‑status voice‑AI platform in under three years. The London‑ and New York‑based start‑up’s text‑to‑speech, dubbing and voice‑cloning APIs now serve publishers, film studios, ed‑tech giants and accessibility apps across 45 languages. After an $80 m Series B round in January 2024—which pushed valuation above $1 bn—ElevenLabs is scaling fast, doubling revenue every quarter and hiring aggressively. If you’re an ML engineer who dreams in spectrograms, an audio‑DSP wizard or a product storyteller who can translate jargon into creative workflows, this guide explains how to land an ElevenLabs AI job in 2025.

AI vs. Data Science vs. Machine Learning Jobs: Which Path Should You Choose?

In recent years, the fields of Artificial Intelligence (AI), Data Science, and Machine Learning (ML) have experienced explosive growth. Spurred by the increase in data availability, advances in computing power, and the demand for intelligent decision-making, organisations of all sizes are investing heavily in these areas. If you’ve been exploring AI jobs on www.artificialintelligencejobs.co.uk, you’ve likely noticed that employers use terms like “AI,” “Data Science,” and “Machine Learning”—often interchangeably. While they are closely related, there are nuanced differences between these fields. Understanding these distinctions is key if you’re trying to decide which path suits you best. This comprehensive guide will help you differentiate among AI, Data Science, and Machine Learning. We will discuss the key skills for each, typical job roles, salary ranges, and provide real-world examples of professionals working in these fields. By the end, you should have a clearer idea of where your strengths and passions might fit, helping you take the next step towards securing your ideal role in the world of data-driven innovation.

AI Programming Languages for Job Seekers: Which Should You Learn First to Launch Your AI Career?

Artificial Intelligence (AI) is no longer confined to academic research; it now sits at the core of countless modern industries. From healthcare diagnostics powered by machine learning to autonomous driving and natural language processing, organisations are investing heavily in AI capabilities. This surge in AI adoption has created a thriving job market for talented professionals—data scientists, machine learning engineers, AI researchers, and more. Yet if you’re aiming to break into this fast-growing field, one of the first questions you’ll ask is, “Which AI programming language should I learn first?” Given the array of options available—Python, R, Java, C++, Julia, among others—understanding the strengths, community support, and industry relevance of each is crucial. In this extensive guide, tailored for www.artificialintelligencejobs.co.uk, we’ll explore the top AI programming languages that can help you stand out to employers, accelerate your learning curve, and equip you with the skills to succeed in a competitive job market. By addressing both beginners and experienced programmers, we aim to provide actionable insights to help you choose the right language, master essential tools, and build a compelling career in AI.