Data Operations Engineer

Manchester
2 days ago
Create job alert

The Role: DataOps Engineer

As a DataOps Engineer, your responsibilities will span the development and implementation of automated solutions for data integration, quality control, and continuous delivery. This role demands a solid grounding in software engineering principles, fluency in programming languages such as Python or Scala, and an adeptness with DevOps tools. You'll play a crucial role in constructing and maintaining sophisticated data pipelines that support the organization's data science and analytics ambitions.

Collaboration is a cornerstone of this position. You will work closely with teams across the organization, assimilating their data requirements and challenges, and crafting agile, robust data solutions. Your efforts in implementing best practices in DataOps will aim to eliminate bottlenecks, elevate data quality, and ensure that data management processes are in tight alignment with our strategic analytics and decision-making objectives.

In this role, automating data pipelines and implementing scalable solutions will be just the beginning. You will also ensure data availability and integrity through effective governance, advocate for DataOps methodologies alongside IT and data teams, and continuously monitor, troubleshoot, and optimize data systems for superior performance.

 Skillset:-

Advanced proficiency in database technologies such as SQL Server, Oracle, MySQL, or PostgreSQL for data management and querying.

Expertise in implementing and managing data pipelines.

Strong understanding of data warehousing concepts, data modelling techniques, and schema design for building and maintaining data warehouses or data lakes.

Proficiency in cloud platforms such as AWS, Azure, or Google Cloud for deploying and managing scalable data infrastructure and services.

Knowledge of DevOps principles and practices for automating infrastructure provisioning, configuration management, and continuous integration/continuous deployment (CI/CD) pipelines.

Strong scripting and programming skills in languages like Python, Bash, or PowerShell for automation, data manipulation, and orchestration tasks.

Ability to collaborate with cross-functional teams including data engineers, data scientists, and business stakeholders to understand requirements, design data solutions, and deliver projects.

Excellent communication skills to effectively convey technical concepts to non-technical stakeholders and collaborate with team members.

Strong problem-solving skills to troubleshoot data issues, optimize performance, and improve reliability of data pipelines and infrastructure.

Ability to stay updated with emerging technologies, trends, and best practices in the field of DataOps and data engineering.

Initiative and drive to continuously improve skills, automate repetitive tasks, and streamline data operations processes for increased efficiency and productivity

Related Jobs

View all jobs

Clinical Data Engineer

Sr. AI Lead (Gen AI)

Sr. AI Lead (Gen AI)

Senior ML Engineer - NLP

Agile Delivery Manager

Data Architect & Team Lead - Data Security

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 Best AI Books for UK Job Seekers: Boost Your Artificial Intelligence Career in 2025

The field of Artificial Intelligence (AI) is advancing at a phenomenal pace, and the demand for skilled professionals in the UK job market—and globally—has never been higher. Whether you’re a newcomer looking to break into the industry or a seasoned professional wanting to future-proof your skill set, reading the right books can make all the difference. From foundational texts that build core understanding to more advanced works diving into cutting-edge technologies, these resources will equip you with the knowledge and insights needed to succeed in AI-related roles. In this comprehensive blog post, we’ll explore ten must-read books for job seekers eager to stand out in a competitive AI recruitment landscape. We’ll examine what each book brings to the table, how it can help you refine both your theoretical and practical skills, and why it’s relevant to your career development. By the end, you’ll have a reading list guaranteed to strengthen your CV and your capabilities, giving you a competitive edge as you carve out a successful AI career.

Navigating AI Career Fairs Like a Pro: Preparing Your Pitch, Questions to Ask, and Follow-Up Strategies to Stand Out

The field of Artificial Intelligence (AI) is growing at an astonishing pace, offering a wealth of opportunities for talented professionals. From machine learning engineers and data scientists to natural language processing (NLP) specialists and computer vision experts, the demand for skilled AI practitioners continues to surge in the UK and globally. AI career fairs present a unique opportunity to connect face-to-face with potential employers, discover cutting-edge innovations, and learn more about the rapidly evolving landscape of data-driven technologies. Yet, attending these events can feel overwhelming: dozens of companies, queues of applicants, and only minutes to make a great first impression. In this detailed guide, we’ll walk you through strategies to prepare for AI career fairs, provide you with key questions to ask, highlight examples of relevant UK events, and reveal the critical follow-up tactics that will help you stand out from the crowd. By the end, you’ll be armed with the knowledge and confidence to land your dream role in the ever-growing world of Artificial Intelligence.

Common Pitfalls AI Job Seekers Face and How to Avoid Them

The global demand for Artificial Intelligence (AI) specialists continues to rise, with organisations across industries keen to implement machine learning, deep learning, and data-driven insights into their operations. Yet, as the market for AI professionals flourishes, so does the level of competition among candidates. Talented individuals who may otherwise be qualified often stumble on common pitfalls that can hinder their success in securing an AI-related role. These pitfalls can lie in their CV, interview approach, job search strategy, or even their understanding of what AI employers are looking for. This article aims to help job seekers in the UK’s AI sector—whether you’re fresh out of university, transitioning into AI from another field, or looking for a senior-level position—avoid the most common mistakes. We’ll discuss how to stand out in a crowded AI job market by improving your CV, acing interviews, and conducting an effective job search. Read on to discover the typical missteps AI professionals make when seeking employment and learn the strategies to avoid them.