Data Operations Engineer

Manchester
1 month ago
Applications closed

Related Jobs

View all jobs

Data Engineering Manager

Senior Software Engineer (GO/PHP)

Lead Product Analyst - AML Handling

Data Engineer

Data Science/Engineer

Principal Data Engineer

The Role: DataOps Engineer

As a DataOps Engineer, your responsibilities will span the development and implementation of automated solutions for data integration, quality control, and continuous delivery. This role demands a solid grounding in software engineering principles, fluency in programming languages such as Python or Scala, and an adeptness with DevOps tools. You'll play a crucial role in constructing and maintaining sophisticated data pipelines that support the organization's data science and analytics ambitions.

Collaboration is a cornerstone of this position. You will work closely with teams across the organization, assimilating their data requirements and challenges, and crafting agile, robust data solutions. Your efforts in implementing best practices in DataOps will aim to eliminate bottlenecks, elevate data quality, and ensure that data management processes are in tight alignment with our strategic analytics and decision-making objectives.

In this role, automating data pipelines and implementing scalable solutions will be just the beginning. You will also ensure data availability and integrity through effective governance, advocate for DataOps methodologies alongside IT and data teams, and continuously monitor, troubleshoot, and optimize data systems for superior performance.

 Skillset:-

Advanced proficiency in database technologies such as SQL Server, Oracle, MySQL, or PostgreSQL for data management and querying.

Expertise in implementing and managing data pipelines.

Strong understanding of data warehousing concepts, data modelling techniques, and schema design for building and maintaining data warehouses or data lakes.

Proficiency in cloud platforms such as AWS, Azure, or Google Cloud for deploying and managing scalable data infrastructure and services.

Knowledge of DevOps principles and practices for automating infrastructure provisioning, configuration management, and continuous integration/continuous deployment (CI/CD) pipelines.

Strong scripting and programming skills in languages like Python, Bash, or PowerShell for automation, data manipulation, and orchestration tasks.

Ability to collaborate with cross-functional teams including data engineers, data scientists, and business stakeholders to understand requirements, design data solutions, and deliver projects.

Excellent communication skills to effectively convey technical concepts to non-technical stakeholders and collaborate with team members.

Strong problem-solving skills to troubleshoot data issues, optimize performance, and improve reliability of data pipelines and infrastructure.

Ability to stay updated with emerging technologies, trends, and best practices in the field of DataOps and data engineering.

Initiative and drive to continuously improve skills, automate repetitive tasks, and streamline data operations processes for increased efficiency and productivity

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

ElevenLabs AI Jobs in 2025: Your Complete UK Guide to Crafting Human‑Level Voice Technology

"Make any voice sound infinitely human." That tagline catapulted ElevenLabs from hack‑day prototype to unicorn‑status voice‑AI platform in under three years. The London‑ and New York‑based start‑up’s text‑to‑speech, dubbing and voice‑cloning APIs now serve publishers, film studios, ed‑tech giants and accessibility apps across 45 languages. After an $80 m Series B round in January 2024—which pushed valuation above $1 bn—ElevenLabs is scaling fast, doubling revenue every quarter and hiring aggressively. If you’re an ML engineer who dreams in spectrograms, an audio‑DSP wizard or a product storyteller who can translate jargon into creative workflows, this guide explains how to land an ElevenLabs AI job in 2025.

AI vs. Data Science vs. Machine Learning Jobs: Which Path Should You Choose?

In recent years, the fields of Artificial Intelligence (AI), Data Science, and Machine Learning (ML) have experienced explosive growth. Spurred by the increase in data availability, advances in computing power, and the demand for intelligent decision-making, organisations of all sizes are investing heavily in these areas. If you’ve been exploring AI jobs on www.artificialintelligencejobs.co.uk, you’ve likely noticed that employers use terms like “AI,” “Data Science,” and “Machine Learning”—often interchangeably. While they are closely related, there are nuanced differences between these fields. Understanding these distinctions is key if you’re trying to decide which path suits you best. This comprehensive guide will help you differentiate among AI, Data Science, and Machine Learning. We will discuss the key skills for each, typical job roles, salary ranges, and provide real-world examples of professionals working in these fields. By the end, you should have a clearer idea of where your strengths and passions might fit, helping you take the next step towards securing your ideal role in the world of data-driven innovation.

AI Programming Languages for Job Seekers: Which Should You Learn First to Launch Your AI Career?

Artificial Intelligence (AI) is no longer confined to academic research; it now sits at the core of countless modern industries. From healthcare diagnostics powered by machine learning to autonomous driving and natural language processing, organisations are investing heavily in AI capabilities. This surge in AI adoption has created a thriving job market for talented professionals—data scientists, machine learning engineers, AI researchers, and more. Yet if you’re aiming to break into this fast-growing field, one of the first questions you’ll ask is, “Which AI programming language should I learn first?” Given the array of options available—Python, R, Java, C++, Julia, among others—understanding the strengths, community support, and industry relevance of each is crucial. In this extensive guide, tailored for www.artificialintelligencejobs.co.uk, we’ll explore the top AI programming languages that can help you stand out to employers, accelerate your learning curve, and equip you with the skills to succeed in a competitive job market. By addressing both beginners and experienced programmers, we aim to provide actionable insights to help you choose the right language, master essential tools, and build a compelling career in AI.