National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Data Engineering Lead - Growth

myGwork
London
9 months ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineering Manager (London)

Machine Learning - Engineering Manager

Machine Learning Engineer Manager

Head of Data Engineering

Head of Data Engineering (Ad Tech)

Data Science Specialist

This job is with Mars, an inclusive employer and a member of myGwork – the largest global platform for the LGBTQ business community. Please do not contact the recruiter directly. Job Description: Are you passionate about Data and Analytics (D&A) and excited about how it can completely transform the way an enterprise works? Do you have the strategic vision, technical expertise, and leadership skills to drive data-driven solutions? Do you want to work in a dynamic, fast-growing category? If so, you might be the ideal candidate for the role of Senior Director, Data Foundations, in the Data and Analytics function for Global Pet Nutrition (PN) at Mars. Pet Nutrition (PN) is the most vibrant category in the FMCG sector. As we work to transform this exciting category, a new program, Digital First, has been mobilized by the Mars Pet Nutrition (PN) leadership team. Digital First places pet parents at the center of all we do in Mars PN, while digitalizing a wide range of business process areas, and creating future fit capabilities to achieve ambitious targets in top line growth, earnings, and pet parent centricity. The Digital First agenda requires Digitizing at scale and requires you to demonstrate significant thought leadership, quality decision making, deep technical know-how, and an ability to navigate complex business challenges while building and leading a team of world class data and analytics leaders. With Digital First, PN is moving to a Product based model to create business facing digital capabilities. Develop and maintain robust data pipelines and storage solutions to support data analytics and machine learning initiatives. Reporting to the Director-Data engineering solution, The role operates globally in collaboration with teams across core and growth functions Key Responsibilities Please list the most important and relevant responsibilities Leadership and Team Management: Lead and mentor a team of data engineers and DevOps engineers. Provide guidance and support in the design, implementation, and maintenance of data assets. Foster a collaborative and high-performance team culture focused on innovation and excellence Data Asset Delivery : Drive the end-to-end delivery of data products. Collaborate closely with cross-functional teams to understand business requirements and translate them into technical solutions. Ensure timely and accurate delivery of data products that meet business needs and quality standards. DataOps and Optimization : Implement DataOps practices to streamline data engineering workflows and improve operational efficiency. Automate data pipeline deployment and monitoring using CI/CD tools. Technical Leadership: Provide technical leadership and guidance on data engineering best practices. Stay informed about industry trends and emerging technologies in data engineering and analytics. Standardization and Governance: Ensure adherence to data governance policies, procedures, and standards. Implement best practices for data management, security, and compliance. Promote data quality and integrity across all data products. Monitor data pipeline performance and optimize for scalability, reliability, and speed. Stakeholder Engagement : Collaborate with PN D&A leadership, PN product owners, and segment D&A leadership to synchronize and formulate data priorities aimed at maximizing value through data utilization. Job Specifications /Qualifications State the preferred education, knowledge, skills and experience this position requires. State the physical and/or mental requirements for the role (e.g. stand for x hours, lift x weight, concentration on repetitive tasks). Note: May differ from the current job holder's own skills and experience. Education & Professional Qualifications 8 years' experience as a Data Engineer. Knowledge / Experience Experience with Spark, Databricks, or similar data processing tools. Strong technical proficiency in data modeling, SQL, NoSQL databases, and data warehousing. Hands-on experience with data pipeline development, ETL processes, and big data technologies (e.g., Hadoop, Spark, Kafka). Proficiency in cloud platforms such as AWS, Azure, or Google Cloud, and cloud-based data services (e.g., AWS Redshift, Azure Synapse Analytics, Google BigQuery). Experience with DataOps practices and tools, including CI/CD for data pipelines. Excellent leadership, communication, and interpersonal skills, with the ability to collaborate effectively with diverse teams and stakeholders. Strong analytical and problem-solving skills, with a focus on driving actionable insights from complex data sets. Experience with data visualization tools (e.g., PowerBI). Proficiency in Microsoft Azure cloud technologies would be a bonus. Key Mars Leadership Competencies (4-6) Refer to the Mars Talent and Development Library Note: competencies selected should be job related Communicates effectively Collaborates Drives Results Self-Development Key Functional Competencies & Technical Skills (3-5) Refer to the Mars Talent and Development Library Distinguish any preferred competences at the end of the list & notate them as "preferred" Data Modeling: Expertise in conceptual, logical, and physical data modeling, with an emphasis on designing scalable and efficient data structures. ETL Development: Proficiency in building and maintaining ETL processes, including data ingestion, transformation, and integration. Cloud Platforms: Proficiency in using cloud platforms like AWS, Azure, or Google Cloud for data storage, processing, and analytics. Database Management: Strong knowledge of both relational and non-relational database systems, including SQL and NoSQL databases. DataOps Practices: Experience with CI/CD for data pipelines and automating data engineering workflows to improve efficiency and reliability. Data Governance: Understanding of data governance principles, including data quality, metadata management, and regulatory compliance. TBDDT Mars is an equal opportunity employer and all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability status, protected veteran status, or any other characteristic protected by law. If you need assistance or an accommodation during the application process because of a disability, it is available upon request. The company is pleased to provide such assistance, and no applicant will be penalized as a result of such a request.

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs Skills Radar 2026: Emerging Frameworks, Languages & Tools to Learn Now

As the UK’s AI sector accelerates towards a £1 trillion tech economy, the job landscape is rapidly evolving. Whether you’re an aspiring AI engineer, a machine learning specialist, or a data-driven software developer, staying ahead of the curve means more than just brushing up on Python. You’ll need to master a new generation of frameworks, languages, and tools shaping the future of artificial intelligence. Welcome to the AI Jobs Skills Radar 2026—your definitive guide to the emerging AI tech stack that employers will be looking for in the next 12–24 months. Updated annually for accuracy and relevance, this guide breaks down the top tools, frameworks, platforms, and programming languages powering the UK’s most in-demand AI careers.

How to Find Hidden AI Jobs in the UK Using Professional Bodies like BCS, IET & the Turing Society

When it comes to job hunting in artificial intelligence (AI), most candidates head straight to traditional job boards, LinkedIn, or recruitment agencies. But what if there was a better way to find roles that aren’t advertised publicly? What if you could access hidden job leads, gain inside knowledge, or get referred by people already in the field? That’s where professional bodies and specialist AI communities come in. In this article, we’ll explore how UK-based organisations like BCS (The Chartered Institute for IT), IET (The Institution of Engineering and Technology), and the Turing Society can help you uncover AI job opportunities you won’t find elsewhere. We'll show you how to strategically use their directories, special-interest groups (SIGs), and CPD (Continuing Professional Development) events to elevate your career and expand your AI job search in ways most job seekers overlook.

How to Get a Better AI Job After a Lay-Off or Redundancy

Being made redundant or laid off can feel like the rug has been pulled from under you. Whether part of a wider company restructuring, budget cuts, or market shifts in tech, many skilled professionals in the AI industry have recently found themselves unexpectedly jobless. But while redundancy brings immediate financial and emotional stress, it can also be a powerful catalyst for career growth. In the fast-evolving field of artificial intelligence, where new roles and specialisms emerge constantly, bouncing back stronger is not only possible—it’s likely. In this guide, we’ll walk you through a step-by-step action plan for turning redundancy into your next big opportunity. From managing the shock to targeting better AI jobs, updating your CV, and approaching recruiters the smart way, we’ll help you move from setback to comeback.