Data Engineering Lead - Growth

myGwork
London
1 year ago
Applications closed

Related Jobs

View all jobs

Data Engineer — DataOps, Cloud Data Pipelines

Engineering Lead II - Machine Learning Platform

Data Scientist

Head of Research Data Services, Global Data Sciences, Oncology Therapy Area, Research and Devel[...]

AI Engineering Lead - GenAI, MLOps & Production (Hybrid)

Data Engineer, Data Engineer Data Analyst ETL Developer BI Developer Big Data Engineer Analytics Engineer Data Platform Engineer Cloud Data Engineer Azure Data Engineer Data Integration Specialist DataOps Engineer Data Pipeline Engineer

This job is with Mars, an inclusive employer and a member of myGwork – the largest global platform for the LGBTQ business community. Please do not contact the recruiter directly. Job Description: Are you passionate about Data and Analytics (D&A) and excited about how it can completely transform the way an enterprise works? Do you have the strategic vision, technical expertise, and leadership skills to drive data-driven solutions? Do you want to work in a dynamic, fast-growing category? If so, you might be the ideal candidate for the role of Senior Director, Data Foundations, in the Data and Analytics function for Global Pet Nutrition (PN) at Mars. Pet Nutrition (PN) is the most vibrant category in the FMCG sector. As we work to transform this exciting category, a new program, Digital First, has been mobilized by the Mars Pet Nutrition (PN) leadership team. Digital First places pet parents at the center of all we do in Mars PN, while digitalizing a wide range of business process areas, and creating future fit capabilities to achieve ambitious targets in top line growth, earnings, and pet parent centricity. The Digital First agenda requires Digitizing at scale and requires you to demonstrate significant thought leadership, quality decision making, deep technical know-how, and an ability to navigate complex business challenges while building and leading a team of world class data and analytics leaders. With Digital First, PN is moving to a Product based model to create business facing digital capabilities. Develop and maintain robust data pipelines and storage solutions to support data analytics and machine learning initiatives. Reporting to the Director-Data engineering solution, The role operates globally in collaboration with teams across core and growth functions Key Responsibilities Please list the most important and relevant responsibilities Leadership and Team Management: Lead and mentor a team of data engineers and DevOps engineers. Provide guidance and support in the design, implementation, and maintenance of data assets. Foster a collaborative and high-performance team culture focused on innovation and excellence Data Asset Delivery : Drive the end-to-end delivery of data products. Collaborate closely with cross-functional teams to understand business requirements and translate them into technical solutions. Ensure timely and accurate delivery of data products that meet business needs and quality standards. DataOps and Optimization : Implement DataOps practices to streamline data engineering workflows and improve operational efficiency. Automate data pipeline deployment and monitoring using CI/CD tools. Technical Leadership: Provide technical leadership and guidance on data engineering best practices. Stay informed about industry trends and emerging technologies in data engineering and analytics. Standardization and Governance: Ensure adherence to data governance policies, procedures, and standards. Implement best practices for data management, security, and compliance. Promote data quality and integrity across all data products. Monitor data pipeline performance and optimize for scalability, reliability, and speed. Stakeholder Engagement : Collaborate with PN D&A leadership, PN product owners, and segment D&A leadership to synchronize and formulate data priorities aimed at maximizing value through data utilization. Job Specifications /Qualifications State the preferred education, knowledge, skills and experience this position requires. State the physical and/or mental requirements for the role (e.g. stand for x hours, lift x weight, concentration on repetitive tasks). Note: May differ from the current job holder's own skills and experience. Education & Professional Qualifications 8 years' experience as a Data Engineer. Knowledge / Experience Experience with Spark, Databricks, or similar data processing tools. Strong technical proficiency in data modeling, SQL, NoSQL databases, and data warehousing. Hands-on experience with data pipeline development, ETL processes, and big data technologies (e.g., Hadoop, Spark, Kafka). Proficiency in cloud platforms such as AWS, Azure, or Google Cloud, and cloud-based data services (e.g., AWS Redshift, Azure Synapse Analytics, Google BigQuery). Experience with DataOps practices and tools, including CI/CD for data pipelines. Excellent leadership, communication, and interpersonal skills, with the ability to collaborate effectively with diverse teams and stakeholders. Strong analytical and problem-solving skills, with a focus on driving actionable insights from complex data sets. Experience with data visualization tools (e.g., PowerBI). Proficiency in Microsoft Azure cloud technologies would be a bonus. Key Mars Leadership Competencies (4-6) Refer to the Mars Talent and Development Library Note: competencies selected should be job related Communicates effectively Collaborates Drives Results Self-Development Key Functional Competencies & Technical Skills (3-5) Refer to the Mars Talent and Development Library Distinguish any preferred competences at the end of the list & notate them as "preferred" Data Modeling: Expertise in conceptual, logical, and physical data modeling, with an emphasis on designing scalable and efficient data structures. ETL Development: Proficiency in building and maintaining ETL processes, including data ingestion, transformation, and integration. Cloud Platforms: Proficiency in using cloud platforms like AWS, Azure, or Google Cloud for data storage, processing, and analytics. Database Management: Strong knowledge of both relational and non-relational database systems, including SQL and NoSQL databases. DataOps Practices: Experience with CI/CD for data pipelines and automating data engineering workflows to improve efficiency and reliability. Data Governance: Understanding of data governance principles, including data quality, metadata management, and regulatory compliance. TBDDT Mars is an equal opportunity employer and all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, sexual orientation, gender identity, national origin, disability status, protected veteran status, or any other characteristic protected by law. If you need assistance or an accommodation during the application process because of a disability, it is available upon request. The company is pleased to provide such assistance, and no applicant will be penalized as a result of such a request.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.