Data Engineering & Analytics Manager

Leeds
1 year ago
Applications closed

Related Jobs

View all jobs

MLOps Engineer

Data Science Manager, Payments

Ralph Lauren Data Science Manager

Analytics Specialist with Data Science

Senior Director, Data Science and Analytics

Data Scientist

Reporting to the General Manager of Data Engineering & Analytics, you'll manage several multi-disciplinary data delivery teams aligned to one of our key customer journey stages with a remit to deliver a wide variety of data analytics, and data integration initiatives.

As our Data Engineering & Analytics Manager, you'll have access to a wide range of benefits including:

Hybrid working (we're in the office 3 days per week)
Annual pay reviews
Colleague discounts on Jet2holidays and Jet2.com flights
What you'll be doing:

As an Data Engineering & Analytics Manager in our Data teams, you'll lead across 4 key areas: -

Data Delivery - You'll be responsible for the delivery performance of your teams and ensure key delivery metrics are closely monitored and allow you to best provide support where needed.
Data Culture - You'll drive a data-first culture both within the data team and across the business by supporting continual learning and development across your teams and the wider business
Data Architecture & Solution Design - You'll support the optimisation of our data architecture, working closely with other data managers and our data architecture team
Team Leadership - You'll manage several multi-disciplinary data delivery teams consisting of Data & Analytics Engineers and Test Engineers with Data Scientists and Data Visualisation specialists embedded as required.
What you'll have:

Communication and Management - Strong communication skills will be needed to influence teams and stakeholders at all levels of the organisation from Engineers to C-level. The role manages several multi-disciplinary teams, so you'll be experienced in setting direction and communicating priorities clearly
Analytical Focus - You should have practical experience helping business users to translate analytical requirements into technical solutions and ensuring that the right analytical questions are being asked
Technical Ability - Strong proficiency needed in designing and delivering data and analytics solution across multiple platforms as well as strong understanding of cloud platforms such as AWS, Azure and GCP (AWS is preferred). Desirable expertise in the following:
Data Warehousing - Snowflake (preferred), Google BigQuery, AWS Redshift or Azure Synapse. A good understanding, and practical experience, of analytical data modelling techniques is essential (e.g. dimensional modelling, data vault, etc)
Data Pipelines - Experience working with a wide variety of data sources and data transformation techniques
Data Visualisation - Although we have dedicated data visualisation specialists within the team, any knowledge of, or experience with, data visualisation platforms such as Tableau (preferred) would be beneficial
This role will likely be focused in our finance and corporate applications domain initially so although prior experience of working in a finance domain is not essential, any experience in this area would be a distinct advantage.

#LI-Hybrid
#LI-MW2

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.