Data Engineering & Analytics Manager

Leeds
1 year ago
Applications closed

Related Jobs

View all jobs

MLOps Engineer

Data Science Associate Manager

Senior Director, Data Science and Analytics

Data Scientist

CDI - Data Engineer (Data Science)

Data Engineer (Data Science)

Reporting to the General Manager of Data Engineering & Analytics, you'll manage several multi-disciplinary data delivery teams aligned to one of our key customer journey stages with a remit to deliver a wide variety of data analytics, and data integration initiatives.

As our Data Engineering & Analytics Manager, you'll have access to a wide range of benefits including:

Hybrid working (we're in the office 3 days per week)
Annual pay reviews
Colleague discounts on Jet2holidays and Jet2.com flights
What you'll be doing:

As an Data Engineering & Analytics Manager in our Data teams, you'll lead across 4 key areas: -

Data Delivery - You'll be responsible for the delivery performance of your teams and ensure key delivery metrics are closely monitored and allow you to best provide support where needed.
Data Culture - You'll drive a data-first culture both within the data team and across the business by supporting continual learning and development across your teams and the wider business
Data Architecture & Solution Design - You'll support the optimisation of our data architecture, working closely with other data managers and our data architecture team
Team Leadership - You'll manage several multi-disciplinary data delivery teams consisting of Data & Analytics Engineers and Test Engineers with Data Scientists and Data Visualisation specialists embedded as required.
What you'll have:

Communication and Management - Strong communication skills will be needed to influence teams and stakeholders at all levels of the organisation from Engineers to C-level. The role manages several multi-disciplinary teams, so you'll be experienced in setting direction and communicating priorities clearly
Analytical Focus - You should have practical experience helping business users to translate analytical requirements into technical solutions and ensuring that the right analytical questions are being asked
Technical Ability - Strong proficiency needed in designing and delivering data and analytics solution across multiple platforms as well as strong understanding of cloud platforms such as AWS, Azure and GCP (AWS is preferred). Desirable expertise in the following:
Data Warehousing - Snowflake (preferred), Google BigQuery, AWS Redshift or Azure Synapse. A good understanding, and practical experience, of analytical data modelling techniques is essential (e.g. dimensional modelling, data vault, etc)
Data Pipelines - Experience working with a wide variety of data sources and data transformation techniques
Data Visualisation - Although we have dedicated data visualisation specialists within the team, any knowledge of, or experience with, data visualisation platforms such as Tableau (preferred) would be beneficial
This role will likely be focused in our finance and corporate applications domain initially so although prior experience of working in a finance domain is not essential, any experience in this area would be a distinct advantage.

#LI-Hybrid
#LI-MW2

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.