Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Engineer | Various Levels | Competitive package

Belfast
6 months ago
Applications closed

Related Jobs

View all jobs

Senior Platform Engineer, Machine Learning

Machine Learning Data Engineer - Obstetric Ultrasound

Machine Learning Data Engineer - Obstetric Ultrasound

Data Scientist II – QuantumBlack, AI by McKinsey

Data Scientist II – QuantumBlack, AI by McKinsey

Data Scientist

Overview
Are you passionate about transforming raw data into powerful insights that drive innovation and impact? Join a forward-thinking consultancy that combines strategy, design, and engineering to deliver cutting-edge digital solutions at scale.
This is a unique opportunity to work in a collaborative, cross-functional team environment where curiosity, creativity, and technical expertise are celebrated. You’ll help clients tackle complex challenges and adapt to a fast-changing world, using cloud technologies and modern data practices to make a lasting difference.

What You’ll Be Doing

Design and deploy scalable data pipelines from ingestion to consumption using tools like Python, Scala, Spark, Java, and SQL.
Integrate data engineering components into wider production systems in collaboration with software engineering teams.
Work with large volumes of structured and unstructured data from diverse sources, applying robust data wrangling, cleaning, and transformation techniques.
Develop solutions in AWS using services like EMR, Glue, RedShift, Kinesis, Lambda, and DynamoDB (or equivalent open-source tools).
Apply your knowledge of batch and stream processing, and where applicable, contribute to data science and machine learning initiatives.
Operate in Agile environments and actively participate in Scrum ceremonies.
Use your understanding of best practices in cloud-native data architecture, including serverless and container-based approaches.What We’re Looking For

Proven experience designing and building data pipelines and data architectures in cloud environments, particularly AWS.
Strong coding ability in languages such as Python, Java, or Scala.
Hands-on experience with data ingestion, transformation, and storage technologies.
Familiarity with data visualization, reporting, and analytical tools.
Comfortable working in Agile teams and contributing to all stages of development.
Willingness to travel to client sites when necessary.Desirable Skills

Experience with AWS-native tools for data processing (EMR, Glue, RedShift, Kinesis, etc.).
Familiarity with open-source equivalents is also welcome.
Knowledge of machine learning, data mining, or natural language processing is a plus.
Understanding of platform-as-a-service (PaaS) and serverless architectures.
Unfortunately this role cannot offer sponsosrship, as candidates must be SC eligible

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.