Data Engineer (Graduate)

Borehamwood
1 day ago
Create job alert

Data Engineer (Graduate)
£30,000 - £35,000 Negotiable DoE
Hybrid working - North London Head Office (Borehamwood) & Home
Job Reference J12940

Candidates MUST be able to drive and have access to their own vehicle to attend the office 3x a week.

The client is not able to consider a visa of any type unfortunately.

Proud to employ great people who are passionate about what we do

Safestore is the UK's largest self-storage group, and part of the FTSE 250. We believe that engaged colleagues, who feel valued by our business, are the foundation of our customer-focused culture. We know our people as individuals, and show respect for each other, enabling everyone to have a voice so that they can bring their full, unique selves to work. We are exceptionally proud that, in 2021, we were awarded the prestigious 'Investors in People' Platinum accreditation, placing us in the top 2% of accredited organisations in the UK and have maintained this accreditation ever since.

Unrivalled opportunity for career development and to positively influence the business

We are currently recruiting for a Data Engineer for a newly created role in the group. The key objective of the role is to take control of the various data sources and databases and ensure the correct data is available to key stakeholders in the most effective way. The role will report to the Commercial Director and will be key part of the commercial team working closely with our Data Scientist, Pricing and IT teams.
Key Accountabilities
• Maintaining single source of truth so there is one set of data that can be used by varying reporting audiences to achieve their business request/need
• Develop and maintain our data sets to support reporting and analysis.
• Assist in developing ETL process to import new data sets, either via API or internal sources
• Proactively engage with key business stakeholders on a regular basis to ensure the data assets under management are maintained in-line with business needs
• Engage with 3rd parties in the sourcing of additional data
• Maintain documentation related to the datasets to ensure auditing and data dictionaries are accurate
• Perform data quality tests and reviews of existing data and improve structure and content where needed
• Assess and recommend available and emerging big data technologies.
• Develop an excellent understanding of relevant internal and external data sources.

Experience & skills required
• Demonstrable knowledge of SQL, Python or similar coding language
• Demonstrable knowledge of Data Warehousing, Data lakes and ETL
• Exposure of merging data sets from different solutions to form one unique data set
• A degree in a relevant field at least at bachelor's level
• Ability to work accurately and to tight timescales
• Self-starter who wants the opportunity to make a real commercial difference to the business performance using data
• Ability to solve problems here and now but also ability to think strategically for the future

If this great opportunity interests you, please make an application

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer (Airport/Manufacturing Experience Required)

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.