Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Engineer - active NPPV3 clearance required

Farringdon
5 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer Data Science/Java/Python/Unix

Data Engineer - DataOps

Machine Learning Engineer

Data Scientist - Engineer Data Engineering · London, UK · Hybrid

Data Science Engineer (Apprentice)

AI Engineer - Data/MLOps

PLEASE NOTE - That to be considered you must be in possession of active NPPV3 clearance.

THE ROLE

  • To design, implement, and develop robust and scalable data infrastructure that supports advanced analytics and intelligence operations within the police department, enabling data-driven decision-making for crime prevention, investigations, and public safety.

  • This post will work within a 130-strong team of intelligence professionals.

  • Enabling seamless integration and analysis of complex criminological and intelligence data, empowering analysts and investigators to identify crime patterns, predict future incidents, and enhance investigative outcomes.

  • Ensuring the integrity, security, and ethical use of sensitive criminal justice information, adhering to stringent compliance standards and fostering public trust.

  • Drive innovation in data management and analytics, leveraging cutting-edge technologies to enhance the department's ability to respond to evolving crime trends and emerging threats.

  • Empower the department with the tools to transform data into actionable intelligence.

    PRIME RESPONSIBILITIES

  • Design and implement data architectures and data models. This involves creating blueprints for how data is organized, stored, and accessed. It includes defining data schemas, relationships, and flows, ensuring data consistency and efficiency.

  • Build data pipelines to process and analyse intelligence data from various sources to identify relevant threats.

  • Develop data solutions to support the analysis of complex intelligence networks and identify potential criminal activity.

  • Administer and maintain databases, ensuring data availability, integrity, and security. It also involves designing and implementing data warehouses to support analytical reporting and data mining. Implement and enforce data security and compliance measures.

  • Collaborate closely with stakeholders to understand their data requirements and develop customized data solutions.

  • Optimize data infrastructure performance and troubleshoot issues by monitoring system performance, identifying bottlenecks, and implementing solutions to improve efficiency. It also includes diagnosing and resolving technical problems.

  • Manage cloud-based data infrastructure, optimise cost, performance, and scalability.

  • Establish and enforce data governance and quality standards by defining and implementing policies and procedures to ensure data accuracy, consistency, and completeness. It also includes establishing data lineage and metadata management processes.

  • Participate in the development of data strategies and initiatives, identifying opportunities to leverage new technologies, and driving innovation in data management practices.

  • Work closely with data scientists, intelligence analysts, and other stakeholders to understand their data needs and provide effective solutions. It also involves communicating complex technical concepts clearly and concisely.

    SKILLS ATTRIBUTES

  • Proficiency in advanced programming languages used for data engineering tasks, including data manipulation, transformation, and analysis (Python, SQL, etc.).

  • Experience with tools and technologies used to build and manage data pipelines, including message queues, orchestration tools, and data integration platforms (Kafka, Airflow, etc.).

  • Familiarity with cloud-based data services, including storage, compute, and analytics (AWS, Azure).

  • Knowledge of database management systems (relational and NoSQL) and data warehousing concepts and technologies.

  • Understanding of data security principles and compliance requirements, particularly related to sensitive data.

  • Ability to support team members, share knowledge, and foster their professional development.

  • Ability to identify and resolve complex technical problems and analyse data to identify trends and patterns.

  • Ability to communicate technical concepts clearly and concisely and work effectively with stakeholders from diverse backgrounds.

    Mobile Site Contact Us About Partners Terms Privacy Cookies

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.