Data Engineer

ANSON MCCADE
Leicester
6 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer

Data Engineer

Data Engineer (Airport/Manufacturing Experience Required)

Data Engineer - Python & Azure

Data Engineering Active DV Clearance Required Anson McCade is delighted to be partnering with a world-renowned consultancy as they seek to appoint Data Engineer to their talented organisation. This opportunity provides experienced individuals who are driven by curiosity and a passion for innovation, committed to building the world's leading AI-powered, cloud-native software solutions for our clients customers. With a legacy of success, our client offer global opportunities, providing a welcoming environment for those looking to advance their careers. The Data Engineer will work across product and technology ecosystem spans Research, Software, and Infrastructure, positioning you at the forefront of growth and innovation. The Data Engineer role calls for a highly analytical professional skilled in Python programming, database management, and data methodologies. Your focus will be on extracting insights from data, developing and deploying machine learning models, managing large-scale data infrastructure, and supporting the development of AI-driven products. Key Responsibilities: Data Collection and Preparation: Gather and clean data from various sources to ensure high-quality datasets that support informed decision-making. Data Analysis and Visualization: Analyze and visualize data using advanced methods to uncover patterns, insights, and trends. Statistical Analysis: Use statistical and mathematical techniques to build a solid foundation for predictive modeling. Machine Learning and AI: Design and implement machine learning and deep learning models to solve key business challenges. ML-Ops / AI-Ops: Apply ML-Ops/AI-Ops best practices to streamline model deployment and management. Big Data Management: Oversee big data infrastructure and perform data engineering tasks to ensure efficient data handling and processing. Version Control and Collaboration: Use version control tools like Git to maintain code integrity and promote team collaboration. AI-Powered Product Development: Develop, design, and support AI-based products that provide meaningful solutions aligned with business goals and user needs. Technical Skillset: Develops applications leveraging Big Data technologies, including API development. Should possess a background in traditional Application Development, along with familiarity with analytics libraries, open-source Natural Language Processing (NLP), and statistical and big data computing libraries. Exhibits strong technical skills in understanding, designing, writing, and debugging complex code. AWS (Lambda S3 DynamoDB etc) Cloudformation JavaScript Cypress testing Openshift containers

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Over the last decade, the United Kingdom has firmly established itself as one of Europe’s most significant technology hubs. Thanks to a vibrant ecosystem of venture capital, government-backed initiatives, and a wealth of academic talent, the UK has become especially fertile ground for artificial intelligence (AI) innovation. This growth is not just evident in established tech giants—new start-ups are emerging every quarter with fresh ideas, ground-breaking technologies, and a drive to solve real-world problems. In this Q3 2025 Investment Tracker, we take a comprehensive look at the latest AI start-ups in the UK that have successfully secured funding. Beyond celebrating these companies’ milestones, we’ll explore how these recent investments translate into exciting new job opportunities for AI professionals. Whether you’re an experienced machine learning engineer, a data scientist, or simply hoping to break into the AI sector, this roundup will give you insights into the most in-demand roles, the skills you need to stand out, and how you can capitalise on the current AI hiring boom.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.