Data Engineer

Yeovil
6 days ago
Create job alert

Data Engineer required by our market leading, award winning, professional services organisation based in Yeovil.
The successful Data Engineer, you'll play a vital role in designing, building, and maintaining sophisticated data pipelines and ensuring the integrity of our clients extensive customer data. Your work will support data-driven decision-making across the business, helping to drive forward key customer insights and analytics.
In this role, you will work closely with cross-functional teams to deliver high-quality data infrastructure that powers marketing efforts and analytics. Reporting directly into the Head of Data, you will collaborate with a team of experienced data professionals while continuing to develop your expertise in data engineering.
Key Responsibilities

  • Design & Build Data Pipelines: Create and maintain scalable data pipeline architecture that supports business needs.
  • Data Management: Assemble large, complex data sets to meet business and technical requirements.
  • Process Improvement: Identify and implement process enhancements, automate manual tasks, and optimize data delivery.
  • Data Integration: Build ETL infrastructure to ensure smooth data extraction, transformation, and loading.
  • Collaboration: Work alongside stakeholders, including data scientists and analysts, to meet data infrastructure needs.
  • Data Quality: Ensure data is clean, accurate, and readily available for reporting and analysis.
  • GDPR Compliance: Maintain data in line with GDPR obligations and support the implementation of retention policies.
  • Documentation & Data Governance: Produce clear documentation to enable efficient data governance and management.
  • Customer Data Management: Manage the "golden record" of customer data, ensuring accurate entity matching and a single customer view.
  • API & Microservices: Build and manage APIs and microservices with a focus on scalable architectures.
    Required Skills & Experience
  • Experience: 3-5 years of hands-on experience with big data tools and frameworks.
  • Technical Skills: Proficiency in SQL, Python, and data pipeline tools such as Apache Kafka, Apache Spark, or AWS Glue.
  • Problem-Solving: Strong analytical skills with the ability to troubleshoot and resolve data issues.
  • Communication: Excellent communication skills for collaborating with technical and non-technical teams.
  • Data Visualization: Experience with tools like Tableau or Power BI.
  • Power BI Skills: Knowledge of DAX, M, and Power Query for data tables and ingestion.
  • Data Structures: Familiarity with XML and JSON data formats.
    Apply today and make an impact with your data engineering expertise!
    This fantastic role comes with a competitive basic salary, an annual bonus, share plans, discounted merchandise, healthcare, gym discount, pension, long service awards, life cover and enhanced family leave to name but a few

Related Jobs

View all jobs

Data Engineer

Data Engineer

Data Engineer | Various Levels | Competitive package

Data Engineer / Analytics Engineer

Data Engineer - SC Cleared

Data Engineering Manager

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Non‑Technical Professionals: Where Do You Fit In?

Your Seat at the AI Table Artificial Intelligence (AI) has left the lab and entered boardrooms, high‑street banks, hospitals and marketing agencies across the United Kingdom. Yet a stubborn myth lingers: “AI careers are only for coders and PhDs.” If you can’t write TensorFlow, surely you have no place in the conversation—right? Wrong. According to PwC’s UK AI Jobs Barometer 2024, vacancies mentioning AI rose 61 % year‑on‑year, but only 35 % of those adverts required advanced programming skills (pwc.co.uk). The Department for Culture, Media & Sport (DCMS) likewise reports that Britain’s fastest‑growing AI employers are “actively recruiting non‑technical talent to scale responsibly” (gov.uk). Put simply, the nation needs communicators, strategists, ethicists, marketers and project leaders every bit as urgently as it needs machine‑learning engineers. This 2,500‑word guide shows where you fit in—and how to land an AI role without touching a line of Python.

ElevenLabs AI Jobs in 2025: Your Complete UK Guide to Crafting Human‑Level Voice Technology

"Make any voice sound infinitely human." That tagline catapulted ElevenLabs from hack‑day prototype to unicorn‑status voice‑AI platform in under three years. The London‑ and New York‑based start‑up’s text‑to‑speech, dubbing and voice‑cloning APIs now serve publishers, film studios, ed‑tech giants and accessibility apps across 45 languages. After an $80 m Series B round in January 2024—which pushed valuation above $1 bn—ElevenLabs is scaling fast, doubling revenue every quarter and hiring aggressively. If you’re an ML engineer who dreams in spectrograms, an audio‑DSP wizard or a product storyteller who can translate jargon into creative workflows, this guide explains how to land an ElevenLabs AI job in 2025.

AI vs. Data Science vs. Machine Learning Jobs: Which Path Should You Choose?

In recent years, the fields of Artificial Intelligence (AI), Data Science, and Machine Learning (ML) have experienced explosive growth. Spurred by the increase in data availability, advances in computing power, and the demand for intelligent decision-making, organisations of all sizes are investing heavily in these areas. If you’ve been exploring AI jobs on www.artificialintelligencejobs.co.uk, you’ve likely noticed that employers use terms like “AI,” “Data Science,” and “Machine Learning”—often interchangeably. While they are closely related, there are nuanced differences between these fields. Understanding these distinctions is key if you’re trying to decide which path suits you best. This comprehensive guide will help you differentiate among AI, Data Science, and Machine Learning. We will discuss the key skills for each, typical job roles, salary ranges, and provide real-world examples of professionals working in these fields. By the end, you should have a clearer idea of where your strengths and passions might fit, helping you take the next step towards securing your ideal role in the world of data-driven innovation.