Data Engineer

Telford
1 year ago
Applications closed

Related Jobs

View all jobs

Data Engineer - AI Analytics and EdTech Developments

Data Engineer - (Python, SQL, Machine Learning) - Robotics

Data Engineering & Data Science Consultant

Data Engineering & Data Science Consultant

MLOps Data Engineer (GCP)

MLOps Data Engineer (GCP)

Role Title: Data Engineer
Duration: 3 months
Location: Telford, hybrid
Rate: up to £510.30 p/d Umbrella inside IR35
Clearance required: SC is preferred but not essential

Role purpose / summary

Our client is seeking an experienced data engineer to join the data team, contributing to the development of data pipelines for a bespoke custom trade communication system for public organisations. Leveraging Azure products (Azure Data Factory and Azure Databricks), you'll play a vital role in shaping the data stream infrastructure & pipelines.

Key Skills/ requirements

Experience in Azure data engineering or data science pipelines, demonstrating proficiency in building and maintaining data pipelines within the Azure ecosystem.
Proficiency in SQL and Python coding, with the ability to efficiently manipulate and analyse large datasets.
Comfortable working with ambiguous requirements and prototyping solutions, demonstrating adaptability and problem-solving skills.
Familiarity with Agile/Scrum methodologies, with the ability to work collaboratively in a fast-paced, iterative environment.
Excellent communication skills to effectively collaborate with clients' data teams, gather requirements, and provide updates on project progress.
Nice to have:

Microsoft Azure Data Engineer or Azure Data Scientist certification.
Experience of Jira and Confluence
All profiles will be reviewed against the required skills and experience. Due to the high number of applications we will only be able to respond to successful applicants in the first instance. We thank you for your interest and the time taken to apply

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.