Data Architect

Cloud Bridge
Marlow
1 month ago
Applications closed

Related Jobs

View all jobs

Data & AI Solution Architect, Azure, Remote

Microsoft Data Solution Architect

Data Engineer - Python & Azure

Data Engineer - Python & Azure

Data Engineer - active NPPV3 clearance required

Data Engineer

We are looking for a skilled Data Architect to join our team. This role involves designing and implementing data solutions on the cloud, including data lakes, warehouses, and pipelines. You’ll collaborate with teams to ensure data is accessible, optimized, and secure for analytics and business intelligence.

Key Responsibilities:

  • Architect scalable, secure cloud-based data systems using AWS services like Redshift, S3, Glue, and DynamoDB to support analytics and machine learning.
  • Develop and manage ETL/ELT workflows, transforming and processing data using AWS Glue, Apache Spark, and custom Python solutions.
  • Create and maintain relational and NoSQL data models to ensure efficient querying, storage, and reporting.
  • Integrate and consolidate data from diverse sources to ensure accuracy and consistency for analytics.
  • Implement data governance and security practices, including encryption, IAM roles, and compliance with GDPR and SOC 2.
  • Continuously optimize data systems for performance, cost efficiency, and scalability, ensuring high availability and reliability.
  • Partner with data engineers, data scientists, and business analysts to design solutions that meet business needs and enable data-driven decisions.
  • Maintain documentation on architecture, workflows, and best practices to ensure consistency and operational continuity.

Required Skills & Experience:

  • Extensive experience with AWS services like Redshift, S3, Glue, RDS, and DynamoDB for building data architectures.
  • Strong background in designing and automating ETL/ELT pipelines using AWS Glue, Spark, and Python.
  • Expertise in data modeling, structuring relational and NoSQL data for optimal performance.
  • Familiarity with data governance, encryption, IAM, and regulatory compliance (e.g., GDPR, SOC 2).
  • Experience with frameworks like Hadoop, Spark, or Kafka for processing large datasets.
  • Proficiency in Python, SQL, and Java for developing custom data workflows and querying large datasets.
  • Knowledge of infrastructure management tools such as CloudFormation, Terraform, or AWS CDK.
  • Ability to work across teams (data engineers, analysts, business stakeholders) to deliver data solutions that meet business needs.

Preferred Qualifications:

  • AWS Certified Solutions Architect – Associate, AWS Certified Big Data – Specialty, or similar certifications.
  • Experience with AWS Kinesis, Kafka, or other real-time data streaming technologies.
  • Familiarity with tools like Apache Atlas or AWS Glue Data Catalog.
  • Experience integrating data systems with machine learning workflows.
  • Experience with services like Amazon EMR, Redshift Spectrum, and AWS Data Pipeline.

If you’re an experienced Data Architect with a strong background in AWS and data solutions, we’d love to hear from you!

#CBTR

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.