Data Architect

London
1 year ago
Applications closed

Related Jobs

View all jobs

DataOps Engineer – Data Science Operations

Data Scientist, Machine Learning Engineer, Data Analyst, Data Engineer, AI Engineer, Business Intelligence Analyst, Data Architect, Analytics Engineer, Research Data Scientist, Statistician, Quantitative Analyst, ML Ops Engineer, Applied Scientist, Insigh

Data Engineer - AI Analytics and EdTech Developments

Data Lead - Artificial Intelligence & Automation (12 Month Fixed-Term Contract)

Sr Product Manager, Data Science

2026 Apprentice - Digital (Data Science) - Belfast

The CAD-Data Architect/Data Advisor will be responsible for formulating the organizational data strategy, including standards of data quality, the flow of data within the organization, help customer with strategy and choice of products and security of data. The candidate will uphold Prodapt’s winning values and work in a way that contributes to the Company’s vision.

  • Database Management: Maintaining the database by determining structural requirements and developing and installing solutions. Recommending upgrades and systems for purchase. Troubleshoot and find solutions for computer systems issues that affect data storage as they arise.
  • Data Security: Ensuring the security of all information and computer systems and digital data. Ensuring adherence to government regulations and guidelines for technological systems and safeguarding of data.
  • Financial Forecasting: Meeting information architecture financial objectives by forecasting requirements, preparing budgets, scheduling expenditures, analyzing variances, and initiating corrective actions.
  • Data Architecture: Defining infrastructure for design and integration of internet computing systems by analyzing information requirements, studying business operations and user-interface requirements, and directing development of physical database. Determining platform architecture, technology, and tools. Improving architecture by tracking emerging technologies and evaluating their applicability to business goals and operational requirements.
  • Strategic Planning: Study organizational mission, goals, and business drivers, and confers with senior management to understand information requirements. Achieve ecommerce information architecture operational objectives by contributing information and recommendations to strategic plans and reviews, preparing and completing action plans, implementing production and quality standards, resolving problems, identifying trends, determining system improvements, and implementing change.
  • Bachelor’s degree (in any field).
  • MSc/BE/Masters with specialization in IT/Computer Science is desirable.
  • 12-15+ years of work experience.
  • Should have telecom and fibre domain knowledge.
  • Good skills and strong data engineering and Machine learning as well.
  • Ability to talk to business, get the BRDs, conceive the requirements and provide a solution for the same.
  • Strong understanding of data governance, Data quality and how they have implemented these processes.
  • They should have worked on Snowflake data warehouse.
  • If they are technically hands on also huge plus, GenAI will also be a good add on skills.
  • Experience working in multi-channel delivery projects is desirable.
  • Technical knowledge in Telecom-Basics, T-SQL, PL-SQL, Tableau/ Power BI/Advanced Excel, R/SAS/ Python/Scala/Java, Azure (SQL Database, Cosmos Database, Data Lake Storage, PostgreSQL Database, Blob, Data Factory, Databricks, Analytic Tools, Stream Analytics, Synapse Analytics, Data Lake Analytics), and AWS (Analytics Services, Amazon Athena, Amazon EMR, Amazon Redshift, Amazon Kinesis, Amazon Openserach Services, Amazon QuickSight, AWS Glue DataBrew, Datalake, Amazon S3, Aws Lake Formation) is required

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.