Data & Analytics Machine Learning Ops Engineer

Peninsula
1 year ago
Applications closed

Related Jobs

View all jobs

Senior Machine Learning Operations Engineer

Machine Learning Engineer - Financial Services

Machine Learning and AI Engineering Lead

Data Scientist - Customer Data

Senior Data Scientist - Recommender Systems Experience

Senior Data Scientist - Recommender Systems Experience

Data & Analytics Machine Learning Ops Engineer

12 Month Contract

Based in London, 2 Days a week onsite

Day rate up to £600 PD VIA Umbrella, Inside IR35



The ML Ops Engineer will be accountable and responsible for understanding the requirements, ensuring the model is built to production standards, looking at how the model can be deployed, as well as streamlining the processes, automating those processes, and ensuring that we're using the right tools correctly.

*

Initially the ML Ops Engineer will be responsible for reviewing the D&A Data Science proof of concept. They will need to understand through the D&A Product Owner the requirements and what the output needs to look like. They will then ensure that the model has been developed in a manner that ports to a production environment. They will provide feedback and guidance on any model changes that would be needed to optimise for production deployments.

*

Once the proof of concept phase is over and we move to development the ML Ops Engineer will be accountable for the development and creation of the pipelines needed to deploy the model in to a production environment. Working with the D&A Development team

*

The ML Ops Engineer will take the model that has been developed by the D&A Data Science team and ensure that it is accessible. The key areas of responsibility are building, deploying, managing and optimising the model in a production environment, to ensure smooth integration and efficient operations.

*

The ML Ops Engineer is responsible for checking deployment pipelines for ML models and triggering CI/CD pipelines. They will need to monitor these pipelines to ensure all tests pass and that the model outputs are generated and sent to the appropriate location. They will review code changes and pull requests from the D&A Data Science team and take these forward in a controlled manner.

*

The ML Ops Engineer should enforce security and data governance best practices to safeguard both the models and the data they process.

*

The ML Ops Engineer will work to put in place BAU processes that will be adopted by D&A. They will define the process and activity that needs to be undertaken building out a ways of working site for the activity. They will identify and implement monitoring tools to ensure response times of the model are within tolerance. Closely work with D&A Data Science Team for model review, run the code refactoring, containerization, versioning to maintain the quality.

Deliverable

*

On boarding and knowledge transfer of Data & Analytics technology patterns and standards.

*

Familiarisation with the proposed solution design for the Road User Charging project

*

Review of pilot architecture, build, and model serving

*

Review of Data Science Model for Secondary ANPR

*

Develop and deploy the ML model to production.

*

Document ML Ops best practice that fits in with the ways of working

*

Training pipeline to a production standard

*

Create all necessary technical materials that support the governance processes such as low level design notes, release notes and support guides

Key Knowledge / Skills

*

Ability to balance competing tasks and demands effectively, such as ensuring that all assigned development tasks are prioritised and interdependences are worked through with the rest of the development team.

*

Effective communication with non-technical stakeholders about complex technicalconcepts to effectively define and prioritise the features, refine the scope.

*

Capable at actively listening to, negotiating with and managing conflicts, in order to determine scope and prioritisation for yourself and the team, and to effectively collaborate with stakeholders and other technical roles to identify problems, determine solutions, and effectively manage delivery of an integrated product across multiple development teams and technologies

*

Capable at continually assessing and improving product processes within their teams, product areas, and on the wider programme to enhance the efficiency and quality of product development, agile practise and product strategy.

*

Solid understanding of machine learning concepts, techniques and frameworks to enable frameworks to be developed.

*

Ability to ensure that data scientists can use ML models without having to worry about how they're built or maintained.

Technical experience as an ML Ops Engineer:

*

Experience of implementing ML models using the Azure stack.

*

Experience in Python and Scala in relation to ML models.

Due to high demand we are only able to respond to applications that meet the required criteria

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.

AI Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we head into 2026, the AI hiring market in the UK is going through one of its biggest shake-ups yet. Economic conditions are still tight, some employers are cutting headcount, & AI itself is automating whole chunks of work. At the same time, demand for strong AI talent is still rising, salaries for in-demand skills remain high, & new roles are emerging around AI safety, governance & automation. Whether you are an AI job seeker planning your next move or a recruiter trying to build teams in a volatile market, understanding the key AI hiring trends for 2026 will help you stay ahead. This guide breaks down the most important trends to watch, what they mean in practice, & how to adapt – with practical actions for both candidates & hiring teams.