Data Analyst

Griffinfire
London
2 months ago
Applications closed

Related Jobs

View all jobs

Data Analyst

Data Analyst Intern

Data Analyst - Graduate

Data Scientist

Claims Data Analyst

Entry Level Data Analyst

We generate millions of datapoints each day, and we're hiring our first Data Analyst to help make sense of them.

The electricity grid is changing beyond recognition, and without deploying new software to orchestrate it, we’ll be unable to decarbonise.

At Axle, we’re building the infrastructure that’ll underpin the decarbonised energy system. Our software crushes CO2 and energy costs. Our goal is insanely ambitious, and we’re building a team to match the scale of this challenge. We’ve just raised a Seed round from world-leading investors including Accel (TechCrunch) and we’re growing fast.

We make the technology to move energy usage to times when electricity is cheap and green. Our software controls vehicle charging, heating systems, and home batteries. We use machine learning to figure out what energy people will need, and when they'll need it. We control tens of thousands of energy assets, and we’re growing quickly.

Axle is a unique startup. We’re building in a legacy industry and moving gigawatt-hours of electrons in the real world, but we operate at lightning speed. We ship extraordinarily quickly, and we’re experts in electricity systems. We’re backed by some of the best investors in the world, and we’re growing the team to meet customer demand.

At Axle, we read data from hundreds of thousands of devices every day. We then optimize the performance of those devices, and participate in electricity markets with them. As our business grows, we're looking for a driven Data Analyst to help build reporting, monitoring, and visualization across the business.

Some things you might work on:

  • Visualizing the charging patterns of thousands of electric vehicles
  • Building dashboards to help us understand which devices are online
  • Tracking our financial performance vs our revenue targets

You’ll need:

  • Tech chops: you’ll need comfort with SQL and basic Python knowledge to work with and automate our data processes
  • Strong analytical skills: you’ll be speaking MW, kWh, and £ every day
  • Commercial instincts: we're looking for somebody who can help us spot opportunities lurking in our data!
  • A deep-seated motivation to combat climate change
  • Comfort moving fast in an uncertain and changeable environment

You can expect:

  • Insane amounts of ownership
  • Lots of fascinating data to get to grips with
  • The support of a world-class engineering & commercial team

This role would suit an ambitious generalist with a strong analytical background. We don’t care if you’ve held a role with a similar title before: if you’ve got a track record of getting things done in complex, data-heavy environments, let’s chat.

Interview process:

  1. Initial interview
  2. Take-home exercise
  3. Final interview (in-person)
  4. Offer, references, and welcome to the team!

We love the idea of fully remote work but it doesn't… work. For very early stage companies, people learn faster, get on better, and accomplish more when they're spending a decent chunk of time together. We ask that you spend 2-3 days a week in our London office.

We are extremely keen to build a diverse company, and we’re particularly eager to hear from candidates who don't fit the traditional role stereotypes. If you’re motivated by our mission, please do reach out, even if you feel you might not ‘check all the boxes’.

#J-18808-Ljbffr

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.