Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Data Analyst

Opus Recruitment Solutions
London
6 months ago
Applications closed

Related Jobs

View all jobs

Data Analyst (Data Science team)

Analyst, Data Science

Graduate - Data Science

Data Science Career Accelerator (Bristol)

Product Data Scientist

Data Scientists

Mid-Level Data Analyst

Hybrid Model - 3 Days

Salary: £40,000 - £60,000


The Company:My client, a growing telecommunications company recently acquired by a private equity firm, is entering an exhilarating phase of expansion and innovation. This is your chance to join a company that's poised to revolutionize the industry!


Key Responsibilities:

  • Develop and implement data analysis strategies to leverage the latest advancements in analytics for innovative solutions.
  • Collaborate with project teams in creating comprehensive data and analytics solutions, including defining data sources, building ETL routines, developing algorithms, testing and training models, and documenting models.
  • Support customer analytics projects, including segmentation and churn analysis, to drive strategic business insights.
  • Optimize propositions for services such as network plans and customer support, ensuring alignment with business goals.
  • Enhance product and service analytics efforts, including network optimization, to maximize business performance.
  • Work with senior leadership to develop and execute detailed plans for solution delivery, ensuring alignment with organizational objectives.
  • Build and maintain strong relationships with business stakeholders, fostering a collaborative environment within the data science and analytics community.


About the Team:The data science and analytics teams at my client's company provide critical analysis for various departments, including Commercial, Marketing, Operations, and Product teams. They are committed to continuous learning and staying up-to-date with the latest developments in data analytics.


What You'll Need:

  • Expertise in advanced analytics, including AI, machine learning, optimization, simulation, predictive analytics, and advanced statistical techniques.
  • Proven experience in developing and implementing data analysis solutions and strategies.
  • Exceptional problem-solving skills with the ability to break down complex problems and identify key performance drivers.
  • Outstanding communication skills to effectively convey data insights to various functions at all levels of the business.
  • Proficiency in core analytical techniques and a proven track record in delivering data science and analytics projects.
  • A degree in decision science, engineering, mathematics, physics, operational research, econometrics, statistics, or another quantitative field.
  • Experience in a data science and analytics role using tools such as SQL, Python, R, Power BI, and Azure.
  • Experience with Databricks and working with large amounts of data.


Ready to innovate in the field of data science and analytics? Apply now and join a team that's shaping the future of telecommunications! 🌟

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.

AI Team Structures Explained: Who Does What in a Modern AI Department

Artificial Intelligence (AI) and Machine Learning (ML) are no longer confined to research labs and tech giants. In the UK, organisations from healthcare and finance to retail and logistics are adopting AI to solve problems, automate processes, and create new products. With this growth comes the need for well-structured teams. But what does an AI department actually look like? Who does what? And how do all the moving parts come together to deliver business value? In this guide, we’ll explain modern AI team structures, break down the responsibilities of each role, explore how teams differ in startups versus enterprises, and highlight what UK employers are looking for. Whether you’re an applicant or an employer, this article will help you understand the anatomy of a successful AI department.