Chief Technology Officer

Propel
Glasgow
1 year ago
Applications closed

Related Jobs

View all jobs

Applied AI and Machine Learning Scientist - Senior Associate

Chief Technology Officer (CTO) – driving innovation


Have you got a proven track record of successful exits or significant value creation events?


If yes, please continue reading it might be worth an introduction.


My client, a PE backed B2C firm are seeking a visionary CTO to lead the technology strategy and drive innovation. As a key member of the executive team, you'll spearhead the digital transformation and leverage cutting-edge technologies to enhance the B2C platform.


Key Responsibilities:

  • Develop and execute a technology roadmap aligned with business goals
  • Lead the modernisation of legacy systems and transition to cloud-based architectures
  • Implement AI and machine learning solutions to improve customer experience and operational efficiency
  • Drive data-driven decision-making across the organisation
  • Manage and mentor a high-performing technology team

Required Qualifications:

  • 10+ years of experience in technology leadership roles, preferably in fast-growing, PE-backed companies
  • Strong background in developing and scaling B2C technology platforms
  • Expertise in data analytics, AI, and machine learning applications in business
  • Experience in driving technology-led business growth and valuation increases
  • Proven track record of successful exits or significant value creation events
  • Strong commercial acumen with the ability to build business cases for tech investments
  • Experience with modern tech stacks and cloud-based architectures
  • Familiarity with Ruby and strategies for legacy system modernisation
  • Experience with CRM systems and mobile app development
  • Strong leadership and team management skills


If you're passionate about leveraging technology to revolutionise a business with a track record of driving significant business value through innovation, I want to hear from you.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.