BESS Modelling Engineer (CS e-STORAGE)

e-STORAGE
Nottingham
2 weeks ago
Applications closed

Related Jobs

View all jobs

BESS Modeling Engineering

e-STORAGE is a subsidiary of Canadian Solar and a leading company specializing in the design, manufacturing, and integration of battery energy storage systems for utility-scale applications. The Company offers its own proprietary LFP battery solution, comprehensive EPC services, and innovative solutions aimed at improving grid operations, integrating clean energy, and contributing to a sustainable future. e-STORAGE has successfully implemented over 3.3 GWh DC of battery energy storage solutions in various locations, including the United States, Canada, the United Kingdom, and China. This significant accomplishment solidifies e-STORAGE's position as a key player in the global energy storage integration industry. Currently, the Company operates two fully automated, state-of-the-art manufacturing facilities with an annual production capacity of approaching 20 GWh. e-STORAGE is fully equipped to continue providing high-quality, scalable energy storage solutions and contribute to the widespread adoption of clean energy.


For additional information about e-STORAGE, visit www.csestorage.com


Canadian Solar was founded in 2001 in Canada and has been listed on NASDAQ since 2006. It is now one of the world's largest solar technology and renewable energy companies. Canadian Solar is a leading manufacturer of solar photovoltaic modules, provider of solar energy and battery storage solutions, and developer of utility-scale solar power and battery storage projects with a geographically diversified pipeline in various stages of development. Over the past 22 years, Canadian Solar has successfully delivered over 102 GW of premium-quality, solar photovoltaic modules to customers across the world. Likewise, since entering the project development business in 2010, Canadian Solar has developed, built, and connected over 9 GWp of solar power projects and over 3 GWh of battery storage projects across the world. Currently, the Company has approximately 700 MWp of solar power projects in operation, 8 GWp of projects under construction or in backlog (late-stage), and an additional 17 GWp of projects in advanced and early-stage pipeline. In addition, the Company has a total battery storage project development pipeline of 52 GWh, including approximately 2 GWh under construction or in backlog, and an additional 50 GWh at advanced and early-stage development. Canadian Solar is one of the most

bankable companies in the solar and renewable energy industry.


For additional information about Canadian Solar, visitwww.canadiansolar.com


Position Title:BESS Modeling Engineering

Department:Engineering

Entity:CS e-Storage

Reports To:Director of Controls Engineering

Location:UK


Position Summary:

The BESS Modeling Engineer will play a critical role in developing, implementing, and maintaining digital twin models and AI-driven analytics for Battery Energy Storage Systems. This role focuses on creating accurate system representations to enhance performance optimization, predictive maintenance, and real-time decision-making capabilities. The ideal candidate will have a strong background in modeling, AI/ML algorithms, control systems, and energy applications. They will be responsible for designing, implementing, and enhancing machine learning models and AI systems to optimize industrial and energy assets. This role requires a strong foundation in simulation modeling, machine learning, and AI-driven analytics to create systems that improve operational efficiency, predict failures, and deliver actionable insights.


Key Responsibilities:

  • Develop and implement machine learning models to optimize BESS performance, including charge/discharge cycles, thermal management, and lifecycle predictions.
  • Create predictive maintenance algorithms to enhance system reliability and minimize downtime.
  • Analyze IoT sensor data to identify anomalies and optimize BESS efficiency and safety.
  • Collaborate with cross-functional teams to integrate machine learning solutions into BESS control and monitoring platforms.
  • Build scalable data pipelines for processing large volumes of time-series and operational data from BESS assets.
  • Perform rigorous testing and validation of machine learning models using historical and real-time BESS data.
  • Document technical processes, methodologies, and results to ensure transparency and reproducibility.


Related Experience:

  • 3+ years of experience in machine learning development, simulation modeling, and AI/ML applications within the energy or BESS industry.
  • Demonstrated experience in predictive maintenance, optimization algorithms, and failure analysis for energy storage systems.
  • Familiarity with edge computing solutions and industrial automation frameworks specific to BESS.
  • Proven ability to work with large data sets and build scalable AI-driven systems tailored to energy applications.
  • Hands-on experience working with IoT sensors and time-series data from BESS systems.


Programming:

  • Proficiency in programming languages such as Python, C++, or R.
  • Experience with simulation tools (e.g., MATLAB/Simulink, Modelica, Ansys, or equivalent platforms) for modeling BESS components.
  • Strong understanding of machine learning frameworks and libraries (e.g., TensorFlow, PyTorch, Scikit-learn).
  • Experience with Linux command-line.


Cloud Platforms:

  • Hands-on experience with cloud-based environments such as AWS, Azure, or GCP.
  • Knowledge of big data platforms and tools for IoT data processing and real-time analytics specific to energy storage.
  • Programming knowledge: Scripting (Python, Batch), relationship & time series databases, writing automated tests, Jupyter, Deepnote.
  • Experience with Azure and AWS cloud infrastructure.


Personal Qualifications:

  • Bachelor’s or Master’s degree in Electrical Engineering, Mechanical Engineering, Computer Science, Data Science, or a related field with a focus on energy systems or BESS.
  • A minimum of 3 years of hands-on experience in AI/ML, digital twin development, or simulation modeling for BESS.
  • Certification in AI/ML or energy storage systems is a plus.
  • Excellent project management skills with a track record of successfully leading complex projects from concept to completion.
  • Strong problem-solving and decision-making abilities.
  • Extensive experience in real-time embedded controls and cloud-based development of software for real-time and non-real-time energy technology platforms.
  • Strong stakeholder management skills with a demonstrated ability to deliver and follow up on large-scale projects on time and within budget.
  • Excellent communication and interpersonal skills, with the ability to collaborate effectively with cross-functional teams and communicate technical concepts to non-technical stakeholders.
  • Willingness to travel up to 25%, including international travel.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 Ways AI Pros Stay Inspired: Boost Creativity with Side Projects, Hackathons & More

In the rapidly evolving world of Artificial Intelligence (AI), creativity and innovation are critical. AI professionals—whether data scientists, machine learning engineers, or research scientists—must constantly rejuvenate their thinking to solve complex challenges. But how exactly do these experts stay energised and creative in their work? The answer often lies in a combination of strategic habits, side projects, hackathons, Kaggle competitions, reading the latest research, and consciously stepping out of comfort zones. This article will explore why these activities are so valuable, as well as provide actionable tips for anyone looking to spark new ideas and enrich their AI career. Below, we’ll delve into tried-and-tested strategies that AI pros employ to drive innovation, foster creativity, and maintain an inspired outlook in an industry that can be both exhilarating and daunting. Whether you’re just starting your AI journey or you’re an experienced professional aiming to sharpen your skills, these insights will help you break out of ruts, discover fresh perspectives, and bring your boldest ideas to life.

Top 10 AI Career Myths Debunked: Key Facts for Aspiring Professionals

Artificial Intelligence (AI) is one of the most dynamic and rapidly growing sectors in technology today. The lure of AI-related roles continues to draw a diverse range of job seekers—from seasoned software engineers to recent graduates in fields such as mathematics, physics, or data science. Yet, despite AI’s growing prominence and accessibility, there remains a dizzying array of myths surrounding careers in this field. From ideas about requiring near-superhuman technical prowess to assumptions that machines themselves will replace these jobs, the stories we hear sometimes do more harm than good. In reality, the AI job market offers far more opportunities than the alarmist headlines and misconceptions might suggest. Here at ArtificialIntelligenceJobs.co.uk, we witness firsthand the myriad roles, backgrounds, and success stories that drive the industry forward. In this blog post, we aim to separate fact from fiction—taking the most pervasive myths about AI careers and debunking them with clear, evidence-based insights. Whether you are an established professional considering a career pivot into data science, or a student uncertain about whether AI is the right path, this article will help you gain a realistic perspective on what AI careers entail. Let’s uncover the truth behind the most common myths and discover the actual opportunities and realities you can expect in this vibrant sector.

Global vs. Local: Comparing the UK AI Job Market to International Landscapes

How to navigate salaries, opportunities, and work culture in AI across the UK, the US, Europe, and Asia Artificial Intelligence (AI) has evolved from a niche field of research to an integral component of modern industries—powering everything from chatbots and driverless cars to sophisticated data analytics in finance and healthcare. The job market for AI professionals is consequently booming, with thousands of new positions posted each month worldwide. In this blog post, we will explore how the UK’s AI job market compares to that of the United States, Europe, and Asia, delving into differences in job demand, salaries, and workplace culture. Additionally, we will provide insights for candidates considering remote or international opportunities. Whether you are a freshly qualified graduate in data science, an experienced machine learning engineer, or a professional from a parallel domain looking to transition into AI, understanding the global vs. local landscape can help you make an informed decision about your career trajectory. As the demand for artificial intelligence skills grows—and borders become more porous with hybrid and remote work—the possibilities for ambitious job-seekers are expanding exponentially. This article will offer a comprehensive look at the various regional markets, exploring how the UK fares in comparison to other major AI hubs. We’ll also suggest factors to consider when choosing where in the world to work, whether physically or remotely. By the end, you’ll have a clearer picture of the AI employment landscape, and you’ll be better prepared to carve out your own path.