National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Bayesian Data Scientist – Advanced AI & Modeling

all.health
London
1 month ago
Applications closed

Related Jobs

View all jobs

Data Scientist - Based in London office 1-2 days/week

Lead Data Scientist

Senior Data Science Director

Customer Facing Machine Learning Scientist

Assistant Professor in Applied Statistics or Actuarial Data Science (T&R)

all.healthis at the forefront of revolutionizing healthcare for millions of patients worldwide. Combining more than 20 years of proprietary wearable technology with clinically relevant signals,all.healthconnects patients and physicians like never before with continuous, data-driven dialogue. This unique position of daily directed guidance stands to redefine primary care while helping people live happier, healthier, and longer.

  • Job Summary:We’re seeking aBayesian Data Scientistwith deep expertise inprobabilistic modelingand a strong grasp of modern AI advancements, includingfoundation models,generative AI, andvariational inference. This role is perfect for someone who thrives on solving complex modeling challenges, optimizing predictions under uncertainty, and developing interpretable, high-impact models in real-world systems. You will apply state-of-the-art techniques from Bayesian statistics and modern machine learning to build scalable, efficient, and insightful models—driving real business impact.
  • Location:Remote / Hybrid / [USA-SF, USA-remote, UK-London, UK-remote]
  • Responsibilities:Translate predictive modeling problems and business constraints into robust Bayesian or probabilistic AI solutions. Design and implement reusable libraries of predictive features and probabilistic representations for diverse ML tasks. Build and optimize tools for scalable probabilistic inference under memory, latency, and compute constraints. Apply and innovate on methods likeBayesian neural networks,variational autoencoders,diffusion models, andGaussian processesfor modern AI use cases. Collaborate closely with product, engineering, and business teams to build end-to-end modeling solutions. Conduct deep-dive statistical and machine learning analyses, simulations, and experimental design. Stay current with emerging trends in generative modeling, causality, uncertainty quantification, and responsible AI.
  • Requirements/Qualifications:Strong experience inBayesian inferenceandprobabilistic modeling: PGMs, HMMs, GPs, MCMC, variational methods, EM algorithms, etc. Proficiency inPython(must) and familiarity withPyMC, NumPyro, TensorFlow Probability, or similar probabilistic programming tools. Hands-on experience with classical ML and modern techniques, includingdeep learning,transformers,diffusion models, andensemble methods. Solid understanding of feature engineering, dimensionality reduction, model construction, validation, and calibration. Experience with uncertainty quantification and performance estimation (e.g., cross-validation, bootstrapping, Bayesian credible intervals). Familiarity with database and data processing tools (e.g., SQL, MongoDB, Spark, Pandas). Ability to translate ambiguous business problems into structured, measurable, and data-driven approaches.
  • Preferred Qualifications:M.Sc or PhD in Statistics, Electrical Engineering, Computer Science, Physics, or a related field. Background ingenerative modeling,Bayesian deep learning,signal/image processing, orgraph models. Experience applying probabilistic models in real-world applications (e.g., recommendation systems, anomaly detection, personalized healthcare, etc.). Understanding of modern ML pipelines and MLOps (e.g., MLFlow, Weights & Biases). Experience with recent trends such asfoundation models,causal inference, orRL with uncertainty. Track record of publishing or presenting work (e.g., NeurIPS, ICML, AISTATS, etc.) is a plus.
  • What we are looking for:Curiosity-driven and research-oriented mindset, with a pragmatic approach to real-world constraints. Strong problem-solving skills, especially under uncertainty. Comfortable working independently and collaboratively across cross-functional teams. Eagerness to stay up to date with the fast-moving AI ecosystem. Excellent communication skills to articulate complex technical ideas to diverse audiences.
The successful candidate’s starting pay will be determined based on job-related skills, experience, qualifications, work location, and market conditions. These ranges may be modified in the future.


#J-18808-Ljbffr

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 AI Recruitment Agencies in the UK You Should Know (2025 Job‑Seeker Guide)

Generative‑AI hype has translated into real hiring: Lightcast recorded +57 % year‑on‑year growth in UK adverts mentioning “machine learning”, “LLM” or “gen‑AI” during Q1 2025. Yet supply still lags. Roughly 18,000 core AI professionals work in the UK, but monthly live vacancies hover around 1,400–1,600. That mismatch makes specialist recruiters invaluable—opening stealth vacancies, advising on salary bands and fast‑tracking interview loops. But many tech agencies sprinkle “AI” on their website without an active desk. To save you time, we vetted 50 + consultancies and kept only those with: A registered UK head office (verified via Companies House). A named AI/Machine‑Learning or Data practice.

AI Jobs Skills Radar 2026: Emerging Frameworks, Languages & Tools to Learn Now

As the UK’s AI sector accelerates towards a £1 trillion tech economy, the job landscape is rapidly evolving. Whether you’re an aspiring AI engineer, a machine learning specialist, or a data-driven software developer, staying ahead of the curve means more than just brushing up on Python. You’ll need to master a new generation of frameworks, languages, and tools shaping the future of artificial intelligence. Welcome to the AI Jobs Skills Radar 2026—your definitive guide to the emerging AI tech stack that employers will be looking for in the next 12–24 months. Updated annually for accuracy and relevance, this guide breaks down the top tools, frameworks, platforms, and programming languages powering the UK’s most in-demand AI careers.

How to Find Hidden AI Jobs in the UK Using Professional Bodies like BCS, IET & the Turing Society

Stop Scrolling Job Boards and Start Tapping the Real AI Market Every week a new headline announces millions of pounds flowing into artificial-intelligence research, defence initiatives, or health-tech pilots. Read the news and you could be forgiven for thinking that AI vacancies must be everywhere—just grab your laptop, open LinkedIn, and pick a role. Yet anyone who has hunted seriously for an AI job in the United Kingdom knows the truth is messier. A large percentage of worthwhile AI positions—especially specialist or senior posts—never appear on public boards. They emerge inside university–industry consortia, defence labs, NHS data-science teams, climate-tech start-ups, and venture studios. Most are filled through referral or conversation long before a recruiter drafts a formal advert. If you wait for a vacancy link, you are already at the back of the queue. The surest way to beat that dynamic is to embed yourself in the professional bodies and grassroots communities where the work is conceived. The UK has a dense network of such organisations: the Chartered Institute for IT (BCS); the Institution of Engineering and Technology (IET) with its Artificial Intelligence Technical Network; the Alan Turing Institute and its student-driven Turing Society; the Royal Statistical Society (RSS); the Institution of Mechanical Engineers (IMechE) and its Mechatronics, Informatics & Control Group; public-funding engines like UK Research and Innovation (UKRI); and an ecosystem of Slack channels and Meetup groups that trade genuine, timely intel. This article is a practical, step-by-step guide to using those networks. You will learn: Why professional bodies matter more than algorithmic job boards Exactly which special-interest groups (SIGs) and technical networks to join How to turn CPD events into informal interviews How to monitor grant databases so you hear about posts months before they exist Concrete scripts, portfolio tactics, and outreach rhythms that convert visibility into offers Follow the playbook and you move from passive applicant to insider—the colleague who hears about a role before it is written down.