Azure Data Engineer (SQL Development / Azure Services)

Reading
1 week ago
Create job alert

IMPORTANT REQUIREMENT: Data Engineering, Azure Data Services and SQL design and development

Overview:
We are delighted to present an exciting opportunity for a skilled Azure Data Engineer. In this role, you will design, develop, and maintain data solutions that underpin clients’ digital transformation goals. The focus is on Microsoft technologies, particularly SQL, with a strong emphasis on cloud-based solutions.

Key Responsibilities:

Data Solutions Development

Design, develop, and implement data solutions using SQL and relevant scripting or programming languages to meet various client requirements.

Deliver data transformation and migration projects.

Collaboration and Integration

Work closely with cross-functional teams to seamlessly integrate data solutions into existing systems and workflows.

Ensure data integrity and security across all solutions.

Azure Cloud Expertise

Use Azure services to create scalable and secure cloud-based data architectures.

Troubleshoot and resolve data-related issues promptly.

Stay up-to-date with emerging technologies and best practices in data engineering and cloud services.

Skills and Qualifications:

  1. Microsoft Technologies

    • Advanced proficiency in SQL (including query optimisation, stored procedures, and performance tuning for MS SQL Server or PostgreSQL).

    • Strong hands-on experience with scripting/programming languages for data solution development.

  2. Azure Cloud

    • Proven knowledge of key Azure services, such as:

      • Azure Data Factory for ETL processes

      • Azure SQL Database and Azure Synapse Analytics/Microsoft Fabric for data storage and analysis

  3. Data Engineering Fundamentals

    • Experience in data modelling and designing scalable, optimised data pipelines

    • Strong understanding of ETL/ELT processes and data transformation

    • Familiarity with data warehousing concepts, including star and snowflake schemas

  4. Automation and Integration

    • Proficiency in PowerShell, Python, Spark, or Azure CLI for automating Azure services

    • Ability to integrate data solutions with enterprise systems and workflows

  5. Security and Compliance

    • Working knowledge of Azure data security best practices (Azure Key Vault, RBAC, encryption)

    • Awareness of data compliance standards (e.g., GDPR)

  6. Problem-Solving and Collaboration

    • Excellent analytical and troubleshooting skills

    • Strong communication skills to effectively collaborate with teams and stakeholders

  7. Desirable Extras

    • Familiarity with Power BI or Tableau for data visualisation

    • Experience with Azure Databricks or Azure Machine Learning for advanced analytics and AI integration

    • Understanding of DevOps practices and CI/CD pipelines in Azure

    • Knowledge of C#/.NET

Related Jobs

View all jobs

Azure Data Engineer (SQL Development / Azure Services)

Data Engineer - Azure or Snowflake

Data Engineer - Python & Azure

Graduate/Junior Data Engineer

Data Engineering Consultant

Data Engineering Consultant

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

10 Ways AI Pros Stay Inspired: Boost Creativity with Side Projects, Hackathons & More

In the rapidly evolving world of Artificial Intelligence (AI), creativity and innovation are critical. AI professionals—whether data scientists, machine learning engineers, or research scientists—must constantly rejuvenate their thinking to solve complex challenges. But how exactly do these experts stay energised and creative in their work? The answer often lies in a combination of strategic habits, side projects, hackathons, Kaggle competitions, reading the latest research, and consciously stepping out of comfort zones. This article will explore why these activities are so valuable, as well as provide actionable tips for anyone looking to spark new ideas and enrich their AI career. Below, we’ll delve into tried-and-tested strategies that AI pros employ to drive innovation, foster creativity, and maintain an inspired outlook in an industry that can be both exhilarating and daunting. Whether you’re just starting your AI journey or you’re an experienced professional aiming to sharpen your skills, these insights will help you break out of ruts, discover fresh perspectives, and bring your boldest ideas to life.

Top 10 AI Career Myths Debunked: Key Facts for Aspiring Professionals

Artificial Intelligence (AI) is one of the most dynamic and rapidly growing sectors in technology today. The lure of AI-related roles continues to draw a diverse range of job seekers—from seasoned software engineers to recent graduates in fields such as mathematics, physics, or data science. Yet, despite AI’s growing prominence and accessibility, there remains a dizzying array of myths surrounding careers in this field. From ideas about requiring near-superhuman technical prowess to assumptions that machines themselves will replace these jobs, the stories we hear sometimes do more harm than good. In reality, the AI job market offers far more opportunities than the alarmist headlines and misconceptions might suggest. Here at ArtificialIntelligenceJobs.co.uk, we witness firsthand the myriad roles, backgrounds, and success stories that drive the industry forward. In this blog post, we aim to separate fact from fiction—taking the most pervasive myths about AI careers and debunking them with clear, evidence-based insights. Whether you are an established professional considering a career pivot into data science, or a student uncertain about whether AI is the right path, this article will help you gain a realistic perspective on what AI careers entail. Let’s uncover the truth behind the most common myths and discover the actual opportunities and realities you can expect in this vibrant sector.

Global vs. Local: Comparing the UK AI Job Market to International Landscapes

How to navigate salaries, opportunities, and work culture in AI across the UK, the US, Europe, and Asia Artificial Intelligence (AI) has evolved from a niche field of research to an integral component of modern industries—powering everything from chatbots and driverless cars to sophisticated data analytics in finance and healthcare. The job market for AI professionals is consequently booming, with thousands of new positions posted each month worldwide. In this blog post, we will explore how the UK’s AI job market compares to that of the United States, Europe, and Asia, delving into differences in job demand, salaries, and workplace culture. Additionally, we will provide insights for candidates considering remote or international opportunities. Whether you are a freshly qualified graduate in data science, an experienced machine learning engineer, or a professional from a parallel domain looking to transition into AI, understanding the global vs. local landscape can help you make an informed decision about your career trajectory. As the demand for artificial intelligence skills grows—and borders become more porous with hybrid and remote work—the possibilities for ambitious job-seekers are expanding exponentially. This article will offer a comprehensive look at the various regional markets, exploring how the UK fares in comparison to other major AI hubs. We’ll also suggest factors to consider when choosing where in the world to work, whether physically or remotely. By the end, you’ll have a clearer picture of the AI employment landscape, and you’ll be better prepared to carve out your own path.