Applied Scientist - generative AI

Evi Technologies Limited
Cambridge
1 year ago
Applications closed

Related Jobs

View all jobs

Data Scientist, Machine Learning Engineer, Data Analyst, Data Engineer, AI Engineer, Business Intelligence Analyst, Data Architect, Analytics Engineer, Research Data Scientist, Statistician, Quantitative Analyst, ML Ops Engineer, Applied Scientist, Insigh

AI Data Scientist: Applied Intelligence & Delivery

Senior Data Scientist (Applied AI)

Machine Learning Engineer (Applied AI) (100% Remote in EMEA)

Applied AI Data Scientist — Real-World Delivery (Cambridge)

Applied AI Data Scientist to Transform Customer Outcomes

Our team builds generative AI solutions that will produce some of the future’s most influential voices in media and art. We develop cutting-edge technologies with Amazon Studios, the provider of original content for Prime Video, with Amazon Game Studios and Alexa, the ground-breaking service that powers the audio for Echo.

Do you want to be part of the team developing the future technology that impacts the customer experience of ground-breaking products? Then come join us and make history.

We are looking for a passionate, talented, and inventive Applied Scientist with a background in Machine Learning to help build industry-leading Speech, Language, Audio and Video technology.

As an Applied Scientist at Amazon you will work with talented peers to develop novel algorithms and generative AI models to drive the state of the art in audio (and vocal arts) generation.

Position Responsibilities:

* Participate in the design, development, evaluation, deployment and updating of data-driven models for digital vocal arts applications.
* Participate in research activities including the application and evaluation and digital vocal and video arts techniques for novel applications.
* Research and implement novel ML and statistical approaches to add value to the business.
* Mentor junior engineers and scientists.

BASIC QUALIFICATIONS

- Experience with generative deep learning models applicable to the creation of synthetic humans like CNNs, GANs, VAEs and NF

PREFERRED QUALIFICATIONS

- PhD in engineering, technology, computer science, machine learning, robotics, operations research, statistics, mathematics or equivalent quantitative field

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.