Applied Machine Learning Lead

NLP PEOPLE
Enfield
2 weeks ago
Create job alert

We believe in better. And we make it happen.

Better content. Better products. And better careers.

Working in Tech, Product or Data at Sky is about building the next and the new. From broadband to broadcast, streaming to mobile, SkyQ to Sky Glass, we never stand still. We optimise and innovate.

We turn big ideas into the products, content and services millions of people love.

And we do it all right here at Sky.

What you’ll do
  • Design, train, and optimise machine learning models focused on user personalisation, encompassing recommendation engines, ranking algorithms, user segmentation, and content analysis.
  • Construct and maintain robust and scalable data pipelines for feature engineering and model training utilising both structured and unstructured large‑scale datasets.
  • Deploy and supervise ML models in production environments, ensuring high availability, optimal performance, and continued relevance.
  • Lead the design and analysis of A/B tests and offline experiments to evaluate model efficacy and support continuous improvement.
  • Engage with multidisciplinary teams to align machine learning initiatives with business objectives and user needs.
  • Evaluate emerging research in machine learning, deep learning, and personalisation for potential integration within existing systems.
What you’ll bring
  • Demonstrated expertise in the full lifecycle of machine learning, from model development, deployment and serving to monitoring and maintenance.
  • Advanced proficiency in Python and knowledge of ML libraries/frameworks (e.g., TensorFlow, PyTorch).
  • Experience using ML Training frameworks (e.g., TFX, Kubeflow Pipelines SDK) and Model Serving technologies (e.g., Tensorflow Serving, Triton, TorchServe).
  • Experience with high‑volume data processing and real‑time streaming architectures.
  • Strong understanding of recommendation system design and personalisation algorithms.
  • Familiarity with Generative AI and its applications in production settings.
  • Exceptional communication and analytical problem‑solving skills.
  • Proven successful experience in mentoring less experienced engineers to improve their technical skills.
A Typical Day at the Office

When you come in, you can grab a coffee or a bit of breakfast from one of the many (subsidised) cafés or restaurants on site. Settle in at your desk, have a quick look at Slack to see what’s happening in the tech communities, then catch up with everyone at the team stand‑up. After that, you’ll join your team and pick the first task to get cracking on.

At lunchtime, you’ve got a few choices: head to The Pavilion for a bite with the team, pop to the onsite gym for a quick workout, or join in with a lunchtime community meetup – whatever suits you. Once you’re back, you’ll carry on working with your team on your current feature.

Later in the afternoon, the team might fancy a quick coffee break before wrapping up the day with a team retrospective.

Global OTT Technology

Our team develops and supports market‑leading video streaming services, underpinned by state‑of‑the‑art engineering principles. We do this at huge scale: for over 50 million customers globally, spanning NBCUniversal Peacock in the US and Sky, NOW and SkyShowtime across Europe. No matter the device, the time or the place, we make sure that our diverse audiences can easily find and enjoy whatever they want to watch, choosing from the world’s best entertainment, news and sport.

The rewards

There’s one thing people can’t stop talking about when it comes to #LifeAtSky: the perks. Here’s a taster:

  • Sky Q, for the TV you love all in one place
  • The magic of Sky Glass at an exclusive rate
  • A generous pension package
  • Private healthcare
  • Discounted mobile and broadband
  • A wide range of Sky VIP rewards and experiences
Inclusion & how you’ll work

We are a Disability Confident Employer, and welcome and encourage applications from all candidates. We will look to ensure a fair and consistent experience for all, and will make reasonable adjustments to support you where appropriate. Please flag any adjustments you need to your recruiter as early as you can.

We’ve embraced hybrid working and split our time between unique office spaces and the convenience of working from home. You’ll find out more about what hybrid working looks like for your role later on in the recruitment process.

Your office space

Osterley

Our Osterley Campus is a 10‑minute walk from Syon Lane train station. Or you can hop on one of our free shuttle buses that run to and from Osterley, Gunnersbury, Ealing Broadway and South Ealing tube stations. There are also plenty of bike shelters and showers.

On campus, you’ll find 13 subsidised restaurants, cafés, and a Waitrose. You can keep in shape at our subsidised gym, catch the latest shows and movies at our cinema, get your car washed, and even get pampered at our beauty salon.

We’d love to hear from you

Inventive, forward‑thinking minds come together to work in Tech, Product and Data at Sky. It’s a place where you can explore what if, how far, and what next.

But better doesn’t stop at what we do, it’s how we do it, too. We embrace each other’s differences. We support our community and contribute to a sustainable future for our business and the planet.

If you believe in better, we’ll back you all the way. Just so you know: if your application is successful, we’ll ask you to complete a criminal record check. And depending on the role you have applied for and the nature of any convictions you may have, we might have to withdraw the offer.

Company:

Sky

Qualifications:Language requirements:Specific requirements:Educational level:Level of experience (years):

Senior (5+ years of experience)

Tagged as: Industry, Machine Learning, NLP, Recommendation System, United Kingdom


#J-18808-Ljbffr

Related Jobs

View all jobs

Applied Machine Learning Lead

Applied Machine Learning Lead

Applied Machine Learning Lead

Applied Machine Learning Lead

Applied Machine Learning Lead

Applied Machine Learning Lead

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.