Applied AI ML Lead - Machine Learning Engineer

JPMorgan Chase & Co.
London
1 year ago
Applications closed

Related Jobs

View all jobs

Data Science and Innovation Manager

Principal Computer Vision Scientist

Applied AIML Lead- Python & Data Science Engineering

Senior Machine Learning Engineer

Senior Machine Learning Research Engineer

Senior Data Scientist

As an Applied AI ML Lead in the JPMorgan Corporate Investment Bank, you will be part of our industry-leading team, combining cutting-edge AI techniques with the company's unique data assets to optimize business decisions and automate processes. You will have the opportunity to advance the state-of-the-art in AI as applied to financial services, leveraging the latest research from fields of Natural Language Processing, Computer Vision, and statistical machine learning to build products that automate processes, help experts prioritize their time, and make better decisions.

Our scientists take the lead in translating business requirements into machine learning problems and ensure through ongoing literature review that our solutions leverage the most appropriate algorithms.

The role is initially that of an individual contributor, though there will be optional opportunity for management responsibility dependent on the candidate’s experience.

Job responsibilities

Focus on rapidly delivering business value with our Applied AI ML solutions. Collaborate closely with ML engineers throughout the entire product lifecycle to ensure that experimental results are reproducible and we’re able to rapidly promote from “Proof of Concept” to production

Required qualifications, capabilities, and skills

Hands on experience in a commercial/ Postdoctoral Research role PhD in a quantitative discipline, . Computer Science, Mathematics, Statistics Able to understand business objectives and align ML problem definition Track record of solving real world problems with AI  Deep specialism in NLP or Computer Vision  Deep understanding of fundamentals of statistics, optimization and ML theory Extensive experience with pytorch, numpy, pandas Hands on experience finetuning modern deep learning architectures (transformers, CNN, autoencoders Knowledge of open source datasets and benchmarks in NLP or Computer Vision Able to communicate technical information and ideas at all levels; convey information clearly and create trust with stakeholders Experience working collaboratively within a team to build software.

Preferred qualifications, capabilities, and skills

Experience pretraining foundation models (LLM / vision/ multimodal) Experience of documenting solutions for enterprise risk/ governance purposes Experience designing/ implementing pipelines using DAGs (. Kubeflow, DVC, Ray) Hands-on experience in implementing distributed/multi-threaded/scalable applications (incl. frameworks such as Ray, Horovod, DeepSpeed, Experience of big data technologies (. Spark, Hadoop) Broad knowledge of MLOps tooling – for versioning, reproducibility, observability etc.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.