National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Applied AI ML Lead - Machine Learning Engineer

JPMorgan Chase & Co.
London
1 year ago
Applications closed

Related Jobs

View all jobs

Applied AI ML Lead - Senior Machine Learning Engineer - Commercial and Investment Bank

Director of AI

AI Engineer

Head Of Machine Learning

Data Scientist

Data Scientist

As an Applied AI ML Lead in the JPMorgan Corporate Investment Bank, you will be part of our industry-leading team, combining cutting-edge AI techniques with the company's unique data assets to optimize business decisions and automate processes. You will have the opportunity to advance the state-of-the-art in AI as applied to financial services, leveraging the latest research from fields of Natural Language Processing, Computer Vision, and statistical machine learning to build products that automate processes, help experts prioritize their time, and make better decisions.

Our scientists take the lead in translating business requirements into machine learning problems and ensure through ongoing literature review that our solutions leverage the most appropriate algorithms.

The role is initially that of an individual contributor, though there will be optional opportunity for management responsibility dependent on the candidate’s experience.

Job responsibilities

Focus on rapidly delivering business value with our Applied AI ML solutions. Collaborate closely with ML engineers throughout the entire product lifecycle to ensure that experimental results are reproducible and we’re able to rapidly promote from “Proof of Concept” to production

Required qualifications, capabilities, and skills

Hands on experience in a commercial/ Postdoctoral Research role PhD in a quantitative discipline, . Computer Science, Mathematics, Statistics Able to understand business objectives and align ML problem definition Track record of solving real world problems with AI  Deep specialism in NLP or Computer Vision  Deep understanding of fundamentals of statistics, optimization and ML theory Extensive experience with pytorch, numpy, pandas Hands on experience finetuning modern deep learning architectures (transformers, CNN, autoencoders Knowledge of open source datasets and benchmarks in NLP or Computer Vision Able to communicate technical information and ideas at all levels; convey information clearly and create trust with stakeholders Experience working collaboratively within a team to build software.

Preferred qualifications, capabilities, and skills

Experience pretraining foundation models (LLM / vision/ multimodal) Experience of documenting solutions for enterprise risk/ governance purposes Experience designing/ implementing pipelines using DAGs (. Kubeflow, DVC, Ray) Hands-on experience in implementing distributed/multi-threaded/scalable applications (incl. frameworks such as Ray, Horovod, DeepSpeed, Experience of big data technologies (. Spark, Hadoop) Broad knowledge of MLOps tooling – for versioning, reproducibility, observability etc.
National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs Skills Radar 2026: Emerging Frameworks, Languages & Tools to Learn Now

As the UK’s AI sector accelerates towards a £1 trillion tech economy, the job landscape is rapidly evolving. Whether you’re an aspiring AI engineer, a machine learning specialist, or a data-driven software developer, staying ahead of the curve means more than just brushing up on Python. You’ll need to master a new generation of frameworks, languages, and tools shaping the future of artificial intelligence. Welcome to the AI Jobs Skills Radar 2026—your definitive guide to the emerging AI tech stack that employers will be looking for in the next 12–24 months. Updated annually for accuracy and relevance, this guide breaks down the top tools, frameworks, platforms, and programming languages powering the UK’s most in-demand AI careers.

How to Find Hidden AI Jobs in the UK Using Professional Bodies like BCS, IET & the Turing Society

When it comes to job hunting in artificial intelligence (AI), most candidates head straight to traditional job boards, LinkedIn, or recruitment agencies. But what if there was a better way to find roles that aren’t advertised publicly? What if you could access hidden job leads, gain inside knowledge, or get referred by people already in the field? That’s where professional bodies and specialist AI communities come in. In this article, we’ll explore how UK-based organisations like BCS (The Chartered Institute for IT), IET (The Institution of Engineering and Technology), and the Turing Society can help you uncover AI job opportunities you won’t find elsewhere. We'll show you how to strategically use their directories, special-interest groups (SIGs), and CPD (Continuing Professional Development) events to elevate your career and expand your AI job search in ways most job seekers overlook.

How to Get a Better AI Job After a Lay-Off or Redundancy

Being made redundant or laid off can feel like the rug has been pulled from under you. Whether part of a wider company restructuring, budget cuts, or market shifts in tech, many skilled professionals in the AI industry have recently found themselves unexpectedly jobless. But while redundancy brings immediate financial and emotional stress, it can also be a powerful catalyst for career growth. In the fast-evolving field of artificial intelligence, where new roles and specialisms emerge constantly, bouncing back stronger is not only possible—it’s likely. In this guide, we’ll walk you through a step-by-step action plan for turning redundancy into your next big opportunity. From managing the shock to targeting better AI jobs, updating your CV, and approaching recruiters the smart way, we’ll help you move from setback to comeback.