Applied AI ML Associate - Machine Learning Scientist – Machine Learning for Technology

JPMorgan Chase & Co.
London
1 month ago
Applications closed

Related Jobs

View all jobs

Applied AI ML Senior Associate - Machine Learning Center of Excellence - Time Series Reinforcement Learning

Head of Data Science & Applied AI ...

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer

Join the elite Applied Innovation of AI (AI2) team at JP Morgan Chase, strategically located within the CTO office.


As a Machine Learning Specialist within the JPMC businesses, you will be responsible for addressing business-critical priorities using innovative machine learning techniques. You will work closely with stakeholders to execute projects that support the growth of the business and explore novel challenges that could revolutionize the way the bank operates. Your role will involve applying advanced machine learning methods to a range of complex tasks, such as data mining, text understanding, anomaly detection, and generative AI. You will collaborate with business, technologists, and control partners to deploy solutions into production. Additionally, your responsibilities will include researching new methods, developing models, and contributing to reusable code and components.

Job Responsibilities:

Research and explore new machine learning methods through independent study, attending conferences, and experimentation. Develop state-of-the-art machine learning models to solve real-world problems in Cybersecurity, Software, and Technology Infrastructure. Collaborate with partner teams to deploy solutions into production. Drive firmwide initiatives by developing large-scale frameworks to accelerate the application of machine learning models. Contribute to reusable code and components shared internally and externally.

Required Qualifications, Capabilities, and Skills:

PhD in a quantitative discipline (., Computer Science, Electrical Engineering, Mathematics, Operations Research, Optimization, or Data Science) or an MS with industry or research experience. Hands-on experience and solid understanding of machine learning and deep learning methods. Extensive experience with machine learning and deep learning toolkits (., TensorFlow, PyTorch, NumPy, Scikit-Learn, Pandas). Scientific thinking and the ability to invent. Ability to design experiments and training frameworks, and evaluate metrics for model performance aligned with business goals. Experience with big data and scalable model training. Solid written and spoken communication to effectively communicate technical concepts and results. Curious, hardworking, detail-oriented, and motivated by complex analytical problems. Ability to work both independently and in collaborative team environments.

Preferred Qualifications, Capabilities, and Skills:

Experience with A/B experimentation and data/metric-driven product development. Experience with cloud-native deployment in a large-scale distributed environment. Knowledge of large language models (LLMs) and accompanying toolsets (., Langchain, Vector databases, open-source Hugging Face Models). Knowledge in Reinforcement Learning or Meta Learning. Published research in areas of Machine Learning, Deep Learning, or Reinforcement Learning at a major conference or journal. Ability to develop and debug production-quality code. Familiarity with continuous integration models and unit test development.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Rural-Remote AI Jobs: A Breath of Fresh Air in the UK Tech Scene

A New Horizon for AI Professionals For years, conversations around tech careers in the UK have hinged on a central theme: to succeed in artificial intelligence (AI), you must be in or around London (or other big metropolitan areas like Manchester, Bristol, or Edinburgh). But times are changing. Technological leaps and the rise of flexible working are paving the way for AI professionals to live and work well beyond the capital. From the rugged coastlines of Cornwall and Pembrokeshire to the rolling hills of the Yorkshire Dales, we’re witnessing an exciting trend of AI remote countryside roles that allow you to work at the forefront of tech innovation—all while enjoying the tranquillity of rural or seaside living. At ArtificialIntelligenceJobs.co.uk, we’re seeing a marked increase in job postings and applications for these sorts of positions. A growing segment of job seekers is actively searching for “tech jobs by the sea” or “AI remote countryside,” driven by a desire for better work-life balance, lower living costs, and a healthier lifestyle. And it’s not just employees who stand to benefit; employers eager to attract top-tier AI talent are discovering that offering remote or flexible roles widens their candidate pool and enhances diversity. If you’re enticed by the idea of logging off from a day of coding neural networks and taking a stroll along a coastal path—or stepping outside your converted barn in Northumberland to soak in some fresh country air—this article is for you. Below, we’ll explore the benefits and challenges of rural-remote AI jobs, the specific roles best suited for remote work, and how to position yourself for success in this rapidly evolving sector.

When Qubits Fuel Neural Networks: The Emerging Frontier of Quantum-Enhanced AI

Artificial Intelligence (AI) has soared to unimaginable heights over the last few years, revolutionising sectors ranging from healthcare and finance to logistics and entertainment. But while deep learning models have grown more sophisticated and powerful, they remain tied to the limitations of classical computing systems. Enter quantum computing, a burgeoning field that leverages qubits—quantum bits—to achieve processing speeds that could leave even today’s most advanced supercomputers in the dust. What if we combined these two forces? Quantum-enhanced AI aims to integrate quantum hardware and algorithms into AI workflows, potentially unlocking efficiencies and capabilities that are currently out of reach. Although this domain is still in its infancy, experts predict it could reshape entire industries in the not-so-distant future. For professionals in AI, this is more than just an interesting development; it’s a pivotal shift that could spawn new roles, research areas, and opportunities. In this thought-leadership piece, we will: Outline the basics of quantum computing and why it matters to AI. Examine how quantum resources might supercharge neural networks. Highlight the career paths at the intersection of quantum and machine learning. Discuss the long-term outlook and what it means for AI professionals looking to stay ahead. Whether you’re already immersed in AI or just beginning to explore its potential, strap in—this new frontier promises a radical transformation.

AI Jobs at Newly Funded UK Start-ups: Q3 2025 Investment Tracker

Over the last decade, the United Kingdom has firmly established itself as one of Europe’s most significant technology hubs. Thanks to a vibrant ecosystem of venture capital, government-backed initiatives, and a wealth of academic talent, the UK has become especially fertile ground for artificial intelligence (AI) innovation. This growth is not just evident in established tech giants—new start-ups are emerging every quarter with fresh ideas, ground-breaking technologies, and a drive to solve real-world problems. In this Q3 2025 Investment Tracker, we take a comprehensive look at the latest AI start-ups in the UK that have successfully secured funding. Beyond celebrating these companies’ milestones, we’ll explore how these recent investments translate into exciting new job opportunities for AI professionals. Whether you’re an experienced machine learning engineer, a data scientist, or simply hoping to break into the AI sector, this roundup will give you insights into the most in-demand roles, the skills you need to stand out, and how you can capitalise on the current AI hiring boom.