National AI Awards 2025Discover AI's trailblazers! Join us to celebrate innovation and nominate industry leaders.

Nominate & Attend

Analytics Engineer - Global Internal Audit

TikTok
London
9 months ago
Applications closed

Related Jobs

View all jobs

Data Engineer - Snowflake, dbt, AWS, Python - Remote

Data Engineer - Snowflake, dbt, AWS, Python - Remote

Data Engineer - Snowflake, dbt, AWS, Python - Remote

Data Engineer - Snowflake, dbt, AWS, Python - Remote

Data Engineer - Snowflake, dbt, AWS, Python - Remote

Data Scientist (AML)

ResponsibilitiesTikTok is the leading destination for short-form mobile video. At TikTok, our mission is to inspire creativity and bring joy. TikTok's global headquarters are in Los Angeles and Singapore, and its offices include New York, London, Dublin, Paris, Berlin, Dubai, Jakarta, Seoul, and Tokyo. Why Join Us: Creation is the core of TikTok's purpose. Our products are built to help imaginations thrive. This is doubly true of the teams that make our innovations possible. Together, we inspire creativity and enrich life - a mission we aim towards achieving every day. To us, every challenge, no matter how ambiguous, is an opportunity; to learn, to innovate, and to grow as one team. Status quo? Never. Courage? Always. At TikTok, we create together and grow together. That's how we drive impact - for ourselves, our company, and the users we serve. About Internal Audit is a global function responsible for providing independent assurance and evaluating the company's risk management, governance and internal control processes to determine if they are designed and operating effectively. The Internal Audit team plans and executes audit projects according to our risk-based audit plan by evaluating financial, compliance, operational, and IT processes and controls. We work with business functions in addressing risks and improving the control environment through timely and comprehensive audit work and tracking of remediation actions until completion. We are looking for an analytics engineer who will power our mission by building state-of-the-art data products that enable and empower continuous auditing and the identification and discovery of risks throughout various verticals. You will be deploying your data engineering and analytics skills to be part of the mission to build state-of-the-art data products for the audit team. 1. Data Warehousing: develop and maintain data warehouses across different business verticals to efficiently support audit engagements; implement data quality checks for key data assets and continuously collaborate with data analysts and partners to maintain completeness and accuracy of these assets. 2. Master the data tools and systems inventory across the company, by being an expert and trainer on the team, in data infrastructure, data applications, and data warehouses. 3. Automation and self-service analytics: partner with data analysts and auditors to build and maintain the data warehouse and efficient data models that power key risk indicators dashboards and other data solutions, in support of continuous auditing data strategy. 4. Develop end-to-end AI enabled tools and solutions (incl. front end interface) that automate the evaluation of the design and effectiveness of controls, as well as improve the efficiency of audit field work. 5. Data training and democracy: Systematically organize the relationship between business processes, risks, and data, as well as provide comprehensive and meaningful data democracy to empower the audit team to derive insights. 6. Stakeholder Relationships: Develop and maintain collaborative working relationships with stakeholders, including data partners and owners across different business verticals. 7. Data Analytics Services: Partner with data analysts and auditors to provide data engineering support and guidance for audit engagements, including observing systems and operations, developing queries/ETL, deploying data quality checks to ensure completeness and accuracy for data sets, and facilitating data analysts in deriving insights. 8. Professional Development: Continue to develop and expand knowledge in data engineering practices, machine learning, AI, and ByteDance products through continuous education.

Minimum Qualifications1. Strong proficiency in SQL and at least one mainstream programming language (Python or R). 2. Experience with data integration, ETL processes, and large-scale data processing systems.3. Working knowledge of cloud-based infrastructure such as AWS, GCP, Azure or Snowflake. 4. Experience in implementation of data quality checks or data observability platforms. 5. Experience building and maintaining data products practiced in one or more of the following areas: data infra for product, business or marketing analytics where core metrics/KPIs are developed and monitored continuously; end-to-end data solutions for continuous audit programs, including automating common analyses and recurring checks. 6. Experience in the technology sector, including but not limited to B2C SaaS, media tech, ecommerce, social media platforms, fintech etc. 7. 5+ years practical experience of data data engineering or analytics engineering. Preferred Qualifications and skills1. Bachelor's degree or above in a quantitative discipline, such as Mathematics, Statistics, Computer Science, Financial Engineering, Operations Research, or Economics. 2. Working knowledge of large scale data processing techniques, such as Hadoop, Flink and MapReduce. 3. Good understanding of data warehouse and data modeling principles. 4. Experience working within a decentralized data environment. 5. Strong business acumen and stakeholder management skills. 6. Good presentation and storytelling skills.

National AI Awards 2025

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Present AI Models to Non-Technical Audiences: A Public Speaking Guide for Job Seekers

In today’s competitive job market, AI professionals are expected to do more than just build brilliant algorithms—they must also explain them clearly to stakeholders who may have no technical background. Whether you're applying for a role as a machine learning engineer, data scientist, or AI consultant, your ability to articulate complex models in simple terms is fast becoming one of the most valued soft skills in interviews and on the job. This guide will help you master the art of public speaking for AI roles, offering tips on structuring presentations, designing effective slides, and using storytelling to make your work resonate with any audience.

AI Jobs UK 2025: 50 Companies Hiring Now

Bookmark this guide – we refresh it every quarter so you always know who’s really scaling their artificial‑intelligence teams. Artificial intelligence hiring has roared back in 2025. The UK’s boosted National AI Strategy funding, record‑breaking private investment (£18.1 billion so far) & a fresh wave of generative‑AI product launches mean employers are jockeying for data scientists, ML engineers, MLOps specialists, AI product managers, prompt engineers & applied researchers. Below are 50 organisations that have advertised UK‑based AI vacancies in the past eight weeks or formally announced growth plans. They’re grouped into five easy‑scan categories so you can jump straight to the kind of employer – & culture – that suits you. For each company you’ll find: Main UK hub Example live or recent vacancy Why it’s worth a look (tech stack, culture, mission) Use the internal links to browse current vacancies on ArtificialIntelligenceJobs.co.uk – or set up a free job alert so fresh roles land in your inbox.

Return-to-Work Pathways: Relaunch Your AI Career with Returnships, Flexible & Hybrid Roles

Stepping back into the workplace after a career break can feel like embarking on a whole new journey—especially in a cutting-edge field such as artificial intelligence (AI). For parents and carers, the challenge isn’t just refreshing your technical know-how but also securing a role that respects your family commitments. Fortunately, the UK’s tech sector now boasts a wealth of return-to-work programmes—from formal returnships to flexible and hybrid opportunities. These pathways are designed to bridge the gap, equipping you with refreshed skills, confidence and a supportive network. In this comprehensive guide, you’ll discover how to: Understand the booming demand for AI talent in the UK Leverage transferable skills honed during your break Overcome common re-entry challenges Build your AI skillset with targeted training Tap into returnship and re-entry programmes Find flexible, hybrid and full-time AI roles that suit your lifestyle Balance professional growth with caring responsibilities Master applications, interviews and networking Whether you’re returning after maternity leave, eldercare duties or another life chapter, this article will equip you with practical steps, resources and insider tips.