AI Quantitative Research Internship

Macro Hive
London
5 months ago
Applications closed

Related Jobs

View all jobs

Research Fellow in Spatial Data Science (Public Health)

Machine Learning Engineer

Quantitative Researcher (Machine Learning)

Senior Python Developer for Computer Vision

Data Scientist II, WW Installments

Senior Data Scientist – Machine Learning -  Defence –Eligible for SC

Overview : Macro Hive is a leading independent provider of global macro and financial market research. Our team of experienced researchers leverage quantitative techniques and cutting-edge technologies to develop innovative and data-driven solutions to complex financial problems, helping our clients make informed investment decisions and stay ahead of the competition. We are seeking talented, motivated interns with solid technical skills to work with us in our Quantitative Research team focusing on applications of AI to finance. This will include researching alpha signals and building state-of-the-art machine learning models across various asset classes. You should be in your final year of studies in a quantitative field from a Russel group university or equivalent. Proficiency with Python programming is essential, alongside expertise in applications of machine learning (ML), deep learning (DL), or natural language processing (NLP) – we use all the latest technologies including LLMs and the wider GenAI tech stack. Responsibilities : · Research: working alongside researchers on end-to-end research projects, including on data analysis, alpha generation, trading models, and applications of LLMs/GenAI to finance. · Development: building and enhancing tools for the quant and data workflow. · Data: sourcing new alternative data sets for the quant and data workflow. This will include: · Conducting research and analysis on financial data sets using advanced modelling and machine learning techniques. · Helping implement and improve existing models and algorithms. · Helping prepare and deliver research reports to clients. · Staying up to date with the latest developments in AI, time series analysis, and quant finance. Qualifications : Required : · Education: BSc/MSc/PhD in a technical degree, including but not limited to Mathematics, Quantitative Finance, Physics, Computer Science, or Engineering. · Machine Learning: Experience working with machine learning techniques (Decision Trees, Random Forests, XGBoost, etc.) for supervised regression and classification tasks. Knowledge of unsupervised learning, NLP (transformers, LLMs etc.), deep learning frameworks (TensorFlow, PyTorch etc.), and architectures for sequential data (RNN, LSTM etc.) is a plus. · Statistical Analysis: you should have a good foundation in statistics and be comfortable with things like time series analysis, hypothesis testing and regression analysis etc. · Python: You should be proficient in Python programming using the ML/scientific stack: NumPy, Pandas, scikit-learn etc. · Problem Solving: Ability to clearly convey data-driven ideas for complex problems and translate them to clean, robust, and efficient code. Desirable: Experience with object-oriented Python. Experience with web-scraping. Experience with cloud services (Azure preferred). Experience with DevOps tools (Git, Docker etc.) Experience working with financial data or trading models.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.

AI Jobs in the Public Sector: MOD, NHS & Gov Digital Service Opportunities

Artificial intelligence (AI) has rapidly evolved from a niche field of computer science into a transformative force reshaping industries across the globe. From healthcare to finance and from education to defence, AI-driven tools and techniques are revolutionising how we approach problems, improve efficiency, and make data-driven decisions. Nowhere is this transformation more apparent than in the United Kingdom’s public sector. Key government entities, including the Ministry of Defence (MOD), the National Health Service (NHS), and the Government Digital Service (GDS), are increasingly incorporating AI into their operations. Consequently, AI jobs within these bodies are growing both in number and strategic importance. In this comprehensive blog post, we will explore the landscape of AI jobs across the UK public sector, with a close look at the MOD, the NHS, and the Government Digital Service. We will delve into the reasons these organisations are investing heavily in AI, the types of roles available, the essential skills and qualifications required, as well as the salary ranges one might expect. Whether you are a new graduate keen to make a meaningful impact through your technical skills or a seasoned professional looking for your next career move, the public sector offers a wealth of opportunities in AI. By the end of this article, you will have a clearer understanding of why AI is so crucial to the public sector’s success, which roles are in demand, and how you can tailor your application to stand out in a competitive and rewarding job market.

Contract vs Permanent AI Jobs: Which Pays Better in 2025?

n the ever-evolving world of technology, the competition for top talent in artificial intelligence (AI) is intense—and the rewards are significant. By 2025, AI roles in machine learning, natural language processing, data science, and robotics are expected to be among the highest-paid professions within the UK technology sector. As an AI professional, deciding between contracting (either as a day‑rate contractor or via fixed-term contracts) and permanent employment could drastically impact your take‑home pay, job security, and career trajectory. In this article, we will delve into the various types of AI roles in 2025—particularly focusing on day‑rate contracting, fixed-term contract (FTC) roles, and permanent positions. We will compare the earning potential across these three employment types, discuss the key pros and cons, and provide practical examples of how your annual take‑home pay might differ under each scenario. Whether you are already working in AI or looking to break into this booming field, understanding these employment options will help you make an informed decision on your next move.