AI Engineer (The AI Architect)

Unreal Gigs
Cambridge
4 months ago
Applications closed

Related Jobs

View all jobs

AI Engineer- Start/ Scale Up Experience

AI Engineer / Data Scientist

Artificial Intelligence Engineer

Artificial Intelligence Engineer

Artificial Intelligence Engineer

Artificial Intelligence Engineer

Introduction:

Are you passionate about building intelligent systems that can analyze data, make predictions, and automate decision-making? Do you love solving complex challenges and applying cutting-edge machine learning techniques to create AI-powered solutions that deliver real-world impact? If you’re excited about designing and developing AI systems that push the boundaries of technology, thenour clienthas the perfect opportunity for you. We’re looking for anAI Engineer(aka The AI Architect) to design, develop, and deploy AI models and solutions that will transform industries.

As an AI Engineer atour client, you’ll work at the forefront of AI innovation, collaborating with data scientists, software developers, and product teams to integrate advanced machine learning models into products and services. Your expertise will be key in turning raw data into actionable insights, driving automation, and improving business outcomes with AI-driven solutions.

Key Responsibilities:

  1. Develop and Deploy AI Models:
  • Design, build, and deploy machine learning and AI models, including supervised and unsupervised learning techniques. You’ll work on projects involving natural language processing (NLP), computer vision, predictive analytics, and more, using frameworks like TensorFlow, PyTorch, or Scikit-learn.
Data Processing and Feature Engineering:
  • Collaborate with data engineers and scientists to collect, preprocess, and transform large datasets for model training. You’ll ensure that data pipelines are optimized for AI workflows and support the development of high-performance models.
Optimize Model Performance:
  • Experiment with different model architectures, algorithms, and hyperparameters to improve accuracy, speed, and scalability. You’ll apply techniques like cross-validation, regularization, and gradient boosting to fine-tune models and ensure they perform well in production.
Deploy Models into Production:
  • Work with DevOps and software engineering teams to deploy AI models into production environments, ensuring they are scalable, efficient, and integrated with other systems. You’ll build APIs and services that make your models accessible for real-time applications.
Monitor and Retrain AI Models:
  • Continuously monitor the performance of deployed models, detecting model drift and updating models as necessary. You’ll retrain models with new data to keep them accurate and relevant in changing environments.
Collaborate with Cross-Functional Teams:
  • Work closely with product managers, engineers, and other stakeholders to understand business needs and translate them into AI solutions. You’ll ensure that AI models align with product goals and deliver measurable business outcomes.
Stay Up-to-Date with AI Research and Trends:
  • Keep current with the latest advancements in machine learning, AI algorithms, and frameworks. You’ll experiment with new technologies and bring innovative approaches to solving AI challenges within the organization.

Requirements

Required Skills:

  • AI and Machine Learning Expertise:Deep understanding of machine learning algorithms, such as decision trees, neural networks, clustering, and reinforcement learning. You’re experienced in developing models for NLP, computer vision, and predictive analytics.
  • Programming and AI Tools:Proficiency in programming languages like Python or R, and experience using machine learning frameworks such as TensorFlow, PyTorch, Keras, and Scikit-learn. You’re comfortable with coding and debugging AI solutions.
  • Data Engineering and Feature Engineering:Hands-on experience with data preprocessing, feature selection, and engineering for AI models. You know how to clean and transform large datasets to support machine learning workflows.
  • Deployment and Integration:Experience deploying AI models into production environments using cloud platforms (AWS, GCP, Azure) and containerization tools like Docker and Kubernetes. You know how to integrate models into existing systems and optimize for scalability.
  • Collaboration and Communication:Strong collaboration skills, with the ability to work with cross-functional teams, including data scientists, engineers, and product managers. You can clearly communicate technical concepts to non-technical stakeholders.

Educational Requirements:

  • Bachelor’s or Master’s degree in Computer Science, Data Science, AI, Machine Learning, or a related field.Equivalent experience in AI development is also highly valued.
  • Certifications or additional coursework in machine learning, AI, or data science are a plus.

Experience Requirements:

  • 3+ years of experience in AI engineering or machine learning,with hands-on experience developing and deploying AI models in real-world applications.
  • Proven track record of working with large datasets, designing machine learning pipelines, and delivering AI-driven solutions that solve business problems.
  • Experience with cloud-based AI services (AWS SageMaker, Google AI Platform, Azure ML) is highly desirable.

Benefits

  • Health and Wellness: Comprehensive medical, dental, and vision insurance plans with low co-pays and premiums.
  • Paid Time Off: Competitive vacation, sick leave, and 20 paid holidays per year.
  • Work-Life Balance: Flexible work schedules and telecommuting options.
  • Professional Development: Opportunities for training, certification reimbursement, and career advancement programs.
  • Wellness Programs: Access to wellness programs, including gym memberships, health screenings, and mental health resources.
  • Life and Disability Insurance: Life insurance and short-term/long-term disability coverage.
  • Employee Assistance Program (EAP): Confidential counseling and support services for personal and professional challenges.
  • Tuition Reimbursement: Financial assistance for continuing education and professional development.
  • Community Engagement: Opportunities to participate in community service and volunteer activities.
  • Recognition Programs: Employee recognition programs to celebrate achievements and milestones.

Get the latest insights and jobs direct. Sign up for our newsletter.

By subscribing you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Portfolio Projects That Get You Hired for AI Jobs (With Real GitHub Examples)

In the fast-evolving world of artificial intelligence (AI), an impressive portfolio of projects can act as your passport to landing a sought-after role. Even if you’ve aced interviews in the past, employers in AI and machine learning (ML) are increasingly asking candidates to demonstrate hands-on experience through the projects they’ve built and shared online. This is because practical ability often speaks volumes about your suitability for a role—far more than any exam or certification alone could. In this article, we’ll explore how to build an outstanding AI portfolio that catches the eye of recruiters and hiring managers, including: Why an AI portfolio is crucial for job seekers. How to choose AI projects that align with your target roles. Specific project ideas and real GitHub examples to help you stand out. Best practices for showcasing your work, from writing clear READMEs to using Jupyter notebooks effectively. Tips on structuring your GitHub so that employers can instantly see your value. Moreover, we’ll discuss how you can use your portfolio to connect with top employers in AI, with a handy link to our CV-upload page on Artificial Intelligence Jobs for when you’re ready to apply. By the end, you’ll have a clear roadmap to building a portfolio that will help secure interviews—and the AI job—of your dreams.

AI Job Interview Warm‑Up: 30 Real Coding & System‑Design Questions

In today's competitive AI job market, nailing a technical interview can be the difference between landing your dream role and getting lost in the crowd. Whether you're looking to break into machine learning, deep learning, NLP (Natural Language Processing), or data science, your problem-solving skills and system design expertise are certain to be put to the test. AI‑related job interviews typically involve a range of coding challenges, algorithmic puzzles, and system design questions. You’ll often be asked to delve into the principles of machine learning pipelines, discuss how to optimise large-scale systems, and demonstrate your coding proficiency in languages like Python, C++, or Java. Adequate preparation not only boosts your confidence but also reduces the likelihood of fumbling through unfamiliar territory. If you’re actively seeking positions at major tech companies or innovative AI start-ups, then check out www.artificialintelligencejobs.co.uk for some of the latest vacancies in the UK. Meanwhile, this blog post will guide you through 30 real coding & system-design questions you’re likely to encounter during your AI job interview. This list is designed to help you practise, anticipate typical question patterns, and stay ahead of the competition. By reading through each question and thinking about the possible approaches, you’ll sharpen your problem-solving skills, time management, and critical thinking. Each question covers fundamental concepts that employers regularly test, ensuring you’re well-equipped for success. Let’s dive right in.

Negotiating Your AI Job Offer: Equity, Bonuses & Perks Explained

Artificial intelligence (AI) has proven itself to be one of the most transformative forces in today’s business world. From smart chatbots in customer service to predictive analytics in finance, AI technologies are reshaping how organisations operate and innovate. As the demand for AI professionals grows, so does the complexity of compensation packages. If you’re a mid‑senior AI professional, you’ve likely seen job offers that include far more than just a base salary—think equity, bonuses, and a range of perks designed to entice you into joining or staying with a company. For many, the focus remains squarely on salary. While that’s understandable—after all, your monthly take‑home pay is what covers day-to-day expenses—limiting your negotiations to salary alone can leave considerable value on the table. From stock options in ambitious startups to sign‑on bonuses that ‘buy you out’ of your current contract, modern AI job offers often include elements that can significantly boost your long-term wealth and job satisfaction. This article aims to shed light on the full scope of AI compensation—specifically focusing on how equity, bonuses, and perks can enhance (or sometimes detract from) the overall value of your package. We’ll delve into how these elements work in practice, what to watch out for, and how to navigate the negotiation process effectively. Our goal is to provide mid‑senior AI professionals with the insights and tools to land a holistic compensation deal that accurately reflects their technical expertise, leadership potential, and strategic importance in this fast-moving field. Whether you’re eyeing a leadership role in machine learning at an established tech giant, or you’re considering a pioneering position at a disruptive AI startup, the knowledge in this guide will help you weigh the merits of base salary alongside the potential riches—and risks—of equity, bonuses, and other benefits. By the end, you’ll have a clearer sense of how to align your compensation with both your immediate lifestyle needs and long-term career aspirations.