AI Engineer

IC Resources
Staines-upon-Thames
11 months ago
Applications closed

Related Jobs

View all jobs

AI Engineer / Machine Learning Engineer

AI Engineer Machine Learning LLM - Polish Speaking

Machine Learning Engineer III

Machine Learning Engineer II

Machine Learning Engineer II

Graduate Machine Learning and AI Engineer

Machine Learning Engineer

Surrey, UK (Hybrid 3 days onsite weekly)

IC Resources is seeking a Machine Learning Engineer to join our client's forward-thinking research team in Staines-upon-Thames. This is an exciting opportunity to work in industry but on long-term funded research projects. If you have a strong background in machine learning applied to healthcare, accessibility, and/or energy management, this could be a great match for you.

Primary Responsibilities:

Develop and optimise machine learning models and solutions for healthcare, accessibility, and energy management applications.

Essential Experience:

  • MSc with research experience after, or a completed PhD, in Data Science, Mathematics or similar.
  • Key strengths in Python, TensorFlow, PyTorch, Scikit-Learn.
  • Expertise in machine learning and deep learning applied to healthcare, accessibility, and/or energy management.
  • Semantic Web technologies (RDF/s, OWL), query languages (SPARQL), and validation/reasoning standards (SHACL, SPIN).
  • Familiarity with Knowledge Graphs, RAG, and AI architecture for semantic search applications.  

Desired Experience:

  • Hands-on experience with health data processing, including EHR, FHIR, and wearable sensor data.

What’s On Offer:

  • Salaried 6-month FTC
  • Base £70-80k
  • Bonus scheme
  • Hybrid 3 days onsite weekly
  • Immediate starter needed

How to Apply:

If you are an ambitious ML Engineer looking to make a real impact in healthcare, accessibility, and energy AI solutions, apply now for immediate consideration! Contact Chris Wyatt, Principal Recruitment Consultant, for more details.

 

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.