AI Engineer

TEC Partners
Oxford
1 year ago
Applications closed

Related Jobs

View all jobs

Machine Learning Engineer

Machine Learning Engineer

Machine Learning Engineer (Manager)

Machine Learning Engineer

Machine Learning Engineer

Senior Machine Learning Engineer

AI Engineer - Hybrid - Oxford Company TEC Partners are representing a fast evolving R&D company specialising in Artificial Intelligence and Machine Learning. They are continuing their growth with the expansion of their AI department due to increased demand for their services. About this AI Engineer role As an AI Engineer, you will be a key player in our client's expansion, you will work closely with the wider AI team, providing expert knowledge and furthering the development of existing and new projects. Why work as an AI Engineer with our client? Basic salary - Negotiable dependent on experience (up to £100,000) Flexible working hours and working structure (hybrid) Share option scheme Accelerated career progression What is expected of you as an AI Engineer with our client? Ideally 4 year's experience within a similar position working in the AI space A strong academic background, ideally with a postgraduate qualification in a related field Experience with Python, MLOps, LLMs, NLP techniques and Cloud technology He ability to present new ideas effectively to senior management The ability to work in an Agile manner, as a team player Security clearance Responsibilities of an AI Engineer with our client Collaborate and work in an agile manner within the wider AI team Test and monitor the performance of software, troubleshooting bugs and making relevant patches when applicable Integrate frameworks such as Tensorflow and PyTorch Deploy LLMs and NLP techniques Stay up to date in the latest research within the AI and ML space If you are interested in this AI Engineer vacancy and you would like to hear more about it or other AI, ML, Data or Python Software Developer vacancies, please contact Stuart at TEC Partners today.

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.