AI Adoption Manager

Wellington
10 months ago
Applications closed

Related Jobs

View all jobs

Senior/Principal Product Manager - Machine Learning and AI

Artificial Intelligence Engineer

Artificial Intelligence Engineer

Artificial Intelligence (AI) Graduate

NSL - Data Scientist

Artificial Intelligence (AI) Graduate

About the Role

We are seeking an experienced and innovative AI & Innovation Specialist to join our client. In this role, you will be responsible for identifying, exploring, and implementing AI-driven solutions that can enhance our business operations. As a key member of our team, you will bridge the gap between technical capabilities and business impact, driving the adoption of AI technologies to support our growth and success.

Key Responsibilities:

Identify AI opportunities: Conduct research and evaluate potential AI use cases that can drive efficiency, automation, or competitive advantage.
Collaborate across teams: Work closely with production, R&D, and commercial teams to understand business needs and how AI can enhance processes.
AI Implementation Support: Assist in developing and testing AI-driven solutions, working alongside external AI consultants and internal teams.
Data & Insights: Support data analysis efforts to assess trends, performance, and AI model effectiveness.
AI Training & Awareness: Help upskill internal teams by explaining AI concepts and ensuring effective adoption of new tools.
Monitor AI Trends: Stay informed on the latest AI developments and assess how they could be applied within the business.

What We're Looking For:

Degree in Computer Science, Data Science, AI, Business Analytics, or a related field.
1-3 years of experience in AI, data science, or technology-driven innovation.
Understanding of AI tools, automation, and machine learning concepts (hands-on coding experience is beneficial but not essential).
Strong problem-solving and analytical skills with a commercial mindset.
Ability to communicate AI concepts to non-technical stakeholders.

Nice to Have:

Experience in manufacturing, production, or supply chain optimisation.
Exposure to working with AI consultancies or external data teams.
Understanding of business process automation

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.

Neurodiversity in AI Careers: Turning Different Thinking into a Superpower

The AI industry moves quickly, breaks rules & rewards people who see the world differently. That makes it a natural home for many neurodivergent people – including those with ADHD, autism & dyslexia. If you’re neurodivergent & considering a career in artificial intelligence, you might have been told your brain is “too much”, “too scattered” or “too different” for a technical field. In reality, many of the strengths that come with ADHD, autism & dyslexia map beautifully onto AI work – from spotting patterns in data to creative problem-solving & deep focus. This guide is written for AI job seekers in the UK. We’ll explore: What neurodiversity means in an AI context How ADHD, autism & dyslexia strengths match specific AI roles Practical workplace adjustments you can ask for under UK law How to talk about your neurodivergence during applications & interviews By the end, you’ll have a clearer picture of where you might thrive in AI – & how to set yourself up for success.

AI Hiring Trends 2026: What to Watch Out For (For Job Seekers & Recruiters)

As we head into 2026, the AI hiring market in the UK is going through one of its biggest shake-ups yet. Economic conditions are still tight, some employers are cutting headcount, & AI itself is automating whole chunks of work. At the same time, demand for strong AI talent is still rising, salaries for in-demand skills remain high, & new roles are emerging around AI safety, governance & automation. Whether you are an AI job seeker planning your next move or a recruiter trying to build teams in a volatile market, understanding the key AI hiring trends for 2026 will help you stay ahead. This guide breaks down the most important trends to watch, what they mean in practice, & how to adapt – with practical actions for both candidates & hiring teams.