2026 Machine Learning Center of Excellence (NLP) - Summer Associate

JPMorgan Chase & Co.
London
2 weeks ago
Create job alert

The Chief Data & Analytics Office (CDAO) at JPMorgan Chase is responsible for accelerating the firm’s data and analytics journey. As a part of CDAO, The Machine Learning Center of Excellence (MLCOE) partners across the firm to shape, create, and deploy Machine Learning Solutions for our most challenging business problems. This includes ensuring the quality, integrity, and security of the company's data, as well as leveraging this data to generate insights and drive decision-making. The CDAO is also responsible for developing and implementing solutions that support the firm’s commercial goals by harnessing artificial intelligence and machine learning technologies to develop new products, improve productivity, and enhance risk management effectively and responsibly.

As a Summer Associate within the MLCOE, you will apply sophisticated machine learning methods to a diverse range of complex domains, including natural language processing, large language models, speech recognition and understanding, reinforcement learning, and recommendation systems. You will collaborate closely with MLCOE mentors, business experts, and technologists, conducting independent research and deploying solutions into production. A strong passion for machine learning, solid expertise in deep learning with hands-on implementation experience, and a commitment to continuous learning and innovation are essential. This role offers a unique opportunity to contribute to and learn from a world-class machine learning team. Learn more about our MLCOE team at /mlcoe.

Our Summer Associate Internship Program begins in June, depending on your academic calendar. Your professional growth and development will be supported throughout the internship program via project work related to your academic and professional interests, mentorship, an engaging speaker series with our senior leaders and more. Your project will have direct impact on JPMorgan’s businesses, will be integrated into our product pipelines, or be part of published research in top AI/ML conferences. Full-time employment offers may be extended upon successful completion of the program within our hybrid work model.

Job responsibilities

Research and explore new machine learning methods through independent study, attending industry-leading conferences, experimentation and participating in our knowledge sharing community Develop state-of-the art machine learning models to solve real-world problems and apply it to tasks such as natural language processing (NLP), speech recognition and analytics, time-series predictions or recommendation systems Collaborate with multiple partner teams such as Business, Technology, Product Management, Legal, Compliance, Strategy and Business Management to deploy solutions into production

Required qualifications, capabilities, and skills

Enrolled in a PhD or MS in a quantitative discipline, ., Computer Science, Electrical Engineering, Mathematics, Operations Research, Optimization, Data Science, or related fields, or equivalent research or industry experience, Expected graduation date of December 2026 through August 2027 Solid background in NLP, large language models, speech recognition and modelling, or personalization/recommendation. Familiarity with state-of-the-art practice in these domains Proficient in Python, and experience with machine learning and deep learning toolkits (., TensorFlow, PyTorch, NumPy, Scikit-Learn, Pandas) Scientific thinking, ability to design experiments and training frameworks, and to outline and evaluate intrinsic and extrinsic metrics for model performance aligned with business goals Solid written and spoken communication to effectively communicate technical concepts and results to both technical, and business audiences Ability to work both independently and in highly collaborative team environments

Preferred qualifications, capabilities, and skills

Strong background in Mathematics and Statistics Familiarity with the financial services industries Published research in areas of natural language processing, deep learning, or reinforcement learning at a major conference or journal Ability to develop and debug production-quality code Familiarity with continuous integration models and unit test development Published research in areas of natural language processing, speech recognition, reinforcement learning, or deep learning at a major conference or journal

Related Jobs

View all jobs

2026 Machine Learning Center of Excellence (Time Series & Reinforcement Learning) - Summer Associate

NLP / LLM Scientist - Applied AI ML Lead - Machine Learning Centre of Excellence

NLP / LLM Scientist – Applied AI ML Lead – Machine Learning Centre of Excellence

Benefit Risk Management Center of Excellence Data Scientist

Machine Learning Engineer

Machine Learning Engineer

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

AI Jobs for Career Switchers in Their 30s, 40s & 50s (UK Reality Check)

Changing career into artificial intelligence in your 30s, 40s or 50s is no longer unusual in the UK. It is happening quietly every day across fintech, healthcare, retail, manufacturing, government & professional services. But it is also surrounded by hype, fear & misinformation. This article is a realistic, UK-specific guide for career switchers who want the truth about AI jobs: what roles genuinely exist, what skills employers actually hire for, how long retraining really takes & whether age is a barrier (spoiler: not in the way people think). If you are considering a move into AI but want facts rather than Silicon Valley fantasy, this is for you.

How to Write an AI Job Ad That Attracts the Right People

Artificial intelligence is now embedded across almost every sector of the UK economy. From fintech and healthcare to retail, defence and climate tech, organisations are competing for AI talent at an unprecedented pace. Yet despite the volume of AI job adverts online, many employers struggle to attract the right candidates. Roles are flooded with unsuitable applications, while highly capable AI professionals scroll past adverts that feel vague, inflated or disconnected from reality. In most cases, the issue isn’t a shortage of AI talent — it’s the quality of the job advert. Writing an effective AI job ad requires more care than traditional tech hiring. AI professionals are analytical, sceptical of hype and highly selective about where they apply. A poorly written advert doesn’t just fail to convert — it actively damages your credibility. This guide explains how to write an AI job ad that attracts the right people, filters out mismatches and positions your organisation as a serious employer in the AI space.

Maths for AI Jobs: The Only Topics You Actually Need (& How to Learn Them)

If you are a software engineer, data scientist or analyst looking to move into AI or you are a UK undergraduate or postgraduate in computer science, maths, engineering or a related subject applying for AI roles, the maths can feel like the biggest barrier. Job descriptions say “strong maths” or “solid fundamentals” but rarely spell out what that means day to day. The good news is you do not need a full maths degree worth of theory to start applying. For most UK roles like Machine Learning Engineer, AI Engineer, Data Scientist, Applied Scientist, NLP Engineer or Computer Vision Engineer, the maths you actually use again & again is concentrated in a handful of topics: Linear algebra essentials Probability & statistics for uncertainty & evaluation Calculus essentials for gradients & backprop Optimisation basics for training & tuning A small amount of discrete maths for practical reasoning This guide turns vague requirements into a clear checklist, a 6-week learning plan & portfolio projects that prove you can translate maths into working code.