2026 Machine Learning Center of Excellence (NLP) - Summer Associate

JPMorgan Chase & Co.
London
1 month ago
Create job alert

The Chief Data & Analytics Office (CDAO) at JPMorgan Chase is responsible for accelerating the firm’s data and analytics journey. As a part of CDAO, The Machine Learning Center of Excellence (MLCOE) partners across the firm to shape, create, and deploy Machine Learning Solutions for our most challenging business problems. This includes ensuring the quality, integrity, and security of the company's data, as well as leveraging this data to generate insights and drive decision-making. The CDAO is also responsible for developing and implementing solutions that support the firm’s commercial goals by harnessing artificial intelligence and machine learning technologies to develop new products, improve productivity, and enhance risk management effectively and responsibly.

As a Summer Associate within the MLCOE, you will apply sophisticated machine learning methods to a diverse range of complex domains, including natural language processing, large language models, speech recognition and understanding, reinforcement learning, and recommendation systems. You will collaborate closely with MLCOE mentors, business experts, and technologists, conducting independent research and deploying solutions into production. A strong passion for machine learning, solid expertise in deep learning with hands-on implementation experience, and a commitment to continuous learning and innovation are essential. This role offers a unique opportunity to contribute to and learn from a world-class machine learning team. Learn more about our MLCOE team at /mlcoe.

Our Summer Associate Internship Program begins in June, depending on your academic calendar. Your professional growth and development will be supported throughout the internship program via project work related to your academic and professional interests, mentorship, an engaging speaker series with our senior leaders and more. Your project will have direct impact on JPMorgan’s businesses, will be integrated into our product pipelines, or be part of published research in top AI/ML conferences. Full-time employment offers may be extended upon successful completion of the program within our hybrid work model.

Job responsibilities

Research and explore new machine learning methods through independent study, attending industry-leading conferences, experimentation and participating in our knowledge sharing community Develop state-of-the art machine learning models to solve real-world problems and apply it to tasks such as natural language processing (NLP), speech recognition and analytics, time-series predictions or recommendation systems Collaborate with multiple partner teams such as Business, Technology, Product Management, Legal, Compliance, Strategy and Business Management to deploy solutions into production

Required qualifications, capabilities, and skills

Enrolled in a PhD or MS in a quantitative discipline, ., Computer Science, Electrical Engineering, Mathematics, Operations Research, Optimization, Data Science, or related fields, or equivalent research or industry experience, Expected graduation date of December 2026 through August 2027 Solid background in NLP, large language models, speech recognition and modelling, or personalization/recommendation. Familiarity with state-of-the-art practice in these domains Proficient in Python, and experience with machine learning and deep learning toolkits (., TensorFlow, PyTorch, NumPy, Scikit-Learn, Pandas) Scientific thinking, ability to design experiments and training frameworks, and to outline and evaluate intrinsic and extrinsic metrics for model performance aligned with business goals Solid written and spoken communication to effectively communicate technical concepts and results to both technical, and business audiences Ability to work both independently and in highly collaborative team environments

Preferred qualifications, capabilities, and skills

Strong background in Mathematics and Statistics Familiarity with the financial services industries Published research in areas of natural language processing, deep learning, or reinforcement learning at a major conference or journal Ability to develop and debug production-quality code Familiarity with continuous integration models and unit test development Published research in areas of natural language processing, speech recognition, reinforcement learning, or deep learning at a major conference or journal

#MLCOE_jobs

Related Jobs

View all jobs

2026 Machine Learning Center of Excellence (Time Series & Reinforcement Learning) - Summer Associate

NLP / LLM Scientist - Applied AI ML Lead - Machine Learning Centre of Excellence

Advisory AI Infrastructure / MLOps Engineer

Risk Management - Data Scientist Associate

Data Scientist

Machine Learning Engineer III

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How Many AI Tools Do You Need to Know to Get an AI Job?

If you are job hunting in AI right now it can feel like you are drowning in tools. Every week there is a new framework, a new “must-learn” platform or a new productivity app that everyone on LinkedIn seems to be using. The result is predictable: job seekers panic-learn a long list of tools without actually getting better at delivering outcomes. Here is the truth most hiring managers will quietly agree with. They do not hire you because you know 27 tools. They hire you because you can solve a problem, communicate trade-offs, ship something reliable and improve it with feedback. Tools matter, but only in service of outcomes. So how many AI tools do you actually need to know? For most AI job seekers: fewer than you think. You need a tight core toolkit plus a role-specific layer. Everything else is optional. This guide breaks it down clearly, gives you a simple framework to choose what to learn and shows you how to present your toolset on your CV, portfolio and interviews.

What Hiring Managers Look for First in AI Job Applications (UK Guide)

Hiring managers do not start by reading your CV line-by-line. They scan for signals. In AI roles especially, they are looking for proof that you can ship, learn fast, communicate clearly & work safely with data and systems. The best applications make those signals obvious in the first 10–20 seconds. This guide breaks down what hiring managers typically look for first in AI applications in the UK market, how to present it on your CV, LinkedIn & portfolio, and the most common reasons strong candidates get overlooked. Use it as a checklist to tighten your application before you click apply.

The Skills Gap in AI Jobs: What Universities Aren’t Teaching

Artificial intelligence is no longer a future concept. It is already reshaping how businesses operate, how decisions are made, and how entire industries compete. From finance and healthcare to retail, manufacturing, defence, and climate science, AI is embedded in critical systems across the UK economy. Yet despite unprecedented demand for AI talent, employers continue to report severe recruitment challenges. Vacancies remain open for months. Salaries rise year on year. Candidates with impressive academic credentials often fail technical interviews. At the heart of this disconnect lies a growing and uncomfortable truth: Universities are not fully preparing graduates for real-world AI jobs. This article explores the AI skills gap in depth—what is missing from many university programmes, why the gap persists, what employers actually want, and how jobseekers can bridge the divide to build a successful career in artificial intelligence.