Be at the heart of actionFly remote-controlled drones into enemy territory to gather vital information.

Apply Now

Senior Data Scientist - Risk Modelling

ADLIB
City of London
1 day ago
Create job alert
Highlights

  • Build models across credit, insurance, pricing, and more.
  • Leading model development from the ground up to drive business impact.
  • A great next step for a data scientist who thrives in the modelling space.

We're looking for a commercially minded Senior Data Scientist with a passion for building risk models. If you're the kind of data scientist who doesn't just tweak existing models but creates them from scratch, this is your chance to make a real impact!


What you'll be doing

This role is all about risk. We're looking for someone technically strong (likely a data scientist or similar) with a proven background in modelling risk across different environments. As part of a specialist Risk Modelling Team you will work in a collaborative, matrix‑style environment. Your work will include model development, enhancement, and forecasting, ensuring outputs are accurate, robust, and clearly communicated.


As part of this role you will model across multiple areas and projects, outside of a highly regulated environment. You need to be adaptable, curious, and genuinely passionate about risk modelling. Projects could include insurance risk, asset risk, financial risk, pricing risk, credit risk, climate risk and more.


You’ll thrive on building and enhancing models from the ground up, bridging the gap between complex statistical techniques and clear, actionable insights for stakeholders. You’ll work closely with senior leaders, collaborate across functions, and play a key role in strategic projects.


What experience you'll need

  • Strong background in risk modelling and using these insights to inform business decisions
  • Proven experience building risk models from scratch and enhancing existing ones
  • Excellent skills in R, Python, or SAS
  • Experience leading complex model updates (both operational enhancements and full development projects) with clear communication of outcomes
  • Ability to present to stakeholders and translate risk issues into business applications
  • Exposure to multiple risk types (insurance, pricing, climate, asset, credit, etc.)
  • Knowledge of model risk management
  • Experience working outside regulated risk environments
  • Desirable: Industry experience in finance, automotive, or similar sectors, plus exposure to advanced techniques like machine learning or predictive modelling

What you'll get in return

Up to £90,000 plus a 20%+ bonus, alongside a comprehensive benefits package. You'll work from the London office three days per week, with flexibility to work remotely the rest of the time.


What's next?

Apply with your CV, and we’ll be in touch to arrange a conversation if it’s a good fit! Got questions? Drop Tegan a message.


#J-18808-Ljbffr

Related Jobs

View all jobs

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Senior Data Scientist

Subscribe to Future Tech Insights for the latest jobs & insights, direct to your inbox.

By subscribing, you agree to our privacy policy and terms of service.

Industry Insights

Discover insightful articles, industry insights, expert tips, and curated resources.

How to Write an AI CV that Beats ATS (UK examples)

Writing an AI CV for the UK market is about clarity, credibility, and alignment. Recruiters spend seconds scanning the top third of your CV, while Applicant Tracking Systems (ATS) check for relevant skills & recent impact. Your goal is to make both happy without gimmicks: plain structure, sharp evidence, and links that prove you can ship to production. This guide shows you exactly how to do that. You’ll get a clean CV anatomy, a phrase bank for measurable bullets, GitHub & portfolio tips, and three copy-ready UK examples (junior, mid, research). Paste the structure, replace the details, and tailor to each job ad.

AI Recruitment Trends 2025 (UK): What Job Seekers Must Know About Today’s Hiring Process

Summary: UK AI hiring has shifted from titles & puzzle rounds to skills, portfolios, evals, safety, governance & measurable business impact. This guide explains what’s changed, what to expect in interviews, and how to prepare—especially for LLM application, MLOps/platform, data science, AI product & safety roles. Who this is for: AI/ML engineers, LLM engineers, data scientists, MLOps/platform engineers, AI product managers, applied researchers & safety/governance specialists targeting roles in the UK.

Why AI Careers in the UK Are Becoming More Multidisciplinary

Artificial intelligence is no longer a single-discipline pursuit. In the UK, employers increasingly want talent that can code and communicate, model and manage risk, experiment and empathise. That shift is reshaping job descriptions, training pathways & career progression. AI is touching regulated sectors, sensitive user journeys & public services — so the work now sits at the crossroads of computer science, law, ethics, psychology, linguistics & design. This isn’t a buzzword-driven change. It’s happening because real systems are deployed in the wild where people have rights, needs, habits & constraints. As models move from lab demos to products that diagnose, advise, detect fraud, personalise education or generate media, teams must align performance with accountability, safety & usability. The UK’s maturing AI ecosystem — from startups to FTSE 100s, consultancies, the public sector & universities — is responding by hiring multidisciplinary teams who can anticipate social impact as confidently as they ship features. Below, we unpack the forces behind this change, spotlight five disciplines now fused with AI roles, show what it means for UK job-seekers & employers, and map practical steps to future-proof your CV.